LEADER 02471nam 2200613 a 450 001 9910451134603321 005 20200520144314.0 010 $a1-62870-231-1 010 $a1-281-86636-9 010 $a9786611866365 010 $a1-86094-458-2 035 $a(CKB)1000000000336362 035 $a(EBL)218699 035 $a(OCoLC)475925272 035 $a(SSID)ssj0000275606 035 $a(PQKBManifestationID)11233648 035 $a(PQKBTitleCode)TC0000275606 035 $a(PQKBWorkID)10219675 035 $a(PQKB)10322058 035 $a(MiAaPQ)EBC218699 035 $a(WSP)0000P289 035 $a(Au-PeEL)EBL218699 035 $a(CaPaEBR)ebr10255388 035 $a(CaONFJC)MIL186636 035 $a(EXLCZ)991000000000336362 100 $a20050222d2003 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aX-ray scattering from semiconductors$b[electronic resource] /$fPaul F. Fewster 205 $a2nd ed. 210 $aRiver Edge, NJ $cImperial College Press$dc2003 215 $a1 online resource (310 p.) 300 $aIncludes index. 311 $a1-86094-360-8 320 $aIncludes bibliographical references and index. 327 $aCopyright; Preface; Contents; 1 - An Introduction to Semiconductor Materials; 2 - An Introduction to X-Ray Scattering; 3 - Equipment for Measuring Diffraction Patterns; 4 - A Practical Guide to the Evaluation of Structural Parameters; Appendix 1; Subject Index 330 $aThis book presents a practical guide to the analysis of materials and includes a thorough description of the underlying theories and instrumental aberrations caused by real experiments. The main emphasis concerns the analysis of thin films and multilayers, primarily semiconductors, although the techniques are very general. Semiconductors can be very perfect composite crystals and therefore their study can lead to the largest volume of information, since X-ray scattering can assess the deviation from perfection. 606 $aX-rays$xScattering 606 $aSemiconductors 608 $aElectronic books. 615 0$aX-rays$xScattering. 615 0$aSemiconductors. 676 $a539.7222 700 $aFewster$b Paul F$0924958 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910451134603321 996 $aX-ray scattering from semiconductors$92143983 997 $aUNINA LEADER 03643nam 2200613 450 001 996466631903316 005 20220303101457.0 010 $a3-540-48200-8 024 7 $a10.1007/BFb0083930 035 $a(CKB)1000000000437416 035 $a(SSID)ssj0000326947 035 $a(PQKBManifestationID)12097399 035 $a(PQKBTitleCode)TC0000326947 035 $a(PQKBWorkID)10296863 035 $a(PQKB)10691322 035 $a(DE-He213)978-3-540-48200-0 035 $a(MiAaPQ)EBC5610351 035 $a(Au-PeEL)EBL5610351 035 $a(OCoLC)1078989803 035 $a(MiAaPQ)EBC6842836 035 $a(Au-PeEL)EBL6842836 035 $a(OCoLC)793079169 035 $a(PPN)155184482 035 $a(EXLCZ)991000000000437416 100 $a20220303d1989 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 00$aStochastic partial differential equations and applications$hII$iProceedings of a Conference held in Trento, Italy February 1-6, 1988. /$fGiuseppe Prato, Luciano Tubaro, editors 205 $a1st ed. 1989. 210 1$aBerlin :$cSpringer-Verlag,$d[1989] 210 4$dİ1989 215 $a1 online resource (VIII, 268 p.) 225 1 $aLecture notes in mathematics ;$v1390 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-387-51510-0 311 $a3-540-51510-0 327 $aA covariant Feynman-Kac formula for unitary bundles over euclidean space -- On the integrated formulation of Zakai and Kushner equations -- Lattice approximation in the stochastic quantization of (?4)2 fields1 -- The support of the density of a filter in the uncorrelated case -- Variational inequalities for the control of stochastic partial differential equations -- Generalized solutions of stochastic evolution equations -- On the relation of anticipative Stratonovich and symetric integrals: A decomposition formula -- Some applications of quantum probability to stochastic differential equations in Hilbert space -- The stability of stochastic partial differential equations and applications. Theorems on supports -- Weak convergence of solutions of stochastic evolution equations on nuclear spaces -- A stochastic reaction-diffusion model -- Stochastic partial differential equations of generalized Brownian functionals -- Viscosity solutions of fully nonlinear second order equations and optimal stochastic control in infinite dimensions. Part II: Optimal control of Zakai's equation -- A generalized equation for a continuous measure branching process -- Mesures cylindriques et distributions sur l'espace de Wiener -- A summary of some identities of the Malliavin calculus -- A Lie algebraic criterion for non-existence of finite dimensionally computable filters -- A generalization of Wahba's theorem on the equivalence between spline smoothing and Bayesian estimation -- A connection between the expansion of filtrations and Girsanov's theorem -- White noise in space and time as the time-derivative of a cylindrical Wiener process -- Large deviations for non-linear radonifications of white noise -- Symmetric solutions of semilinear stochastic equations. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1390. 606 $aMathematics 615 0$aMathematics. 676 $a510 686 $a60H15$2msc 702 $aPrato$b Giuseppe 702 $aTubaro$b Luciano 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466631903316 996 $aStochastic partial differential equations and applications$980175 997 $aUNISA