LEADER 04421nam 22008055 450 001 996466628803316 005 20200706183312.0 010 $a3-642-21137-2 024 7 $a10.1007/978-3-642-21137-9 035 $a(CKB)2670000000100001 035 $a(SSID)ssj0000508380 035 $a(PQKBManifestationID)11308761 035 $a(PQKBTitleCode)TC0000508380 035 $a(PQKBWorkID)10555669 035 $a(PQKB)10440518 035 $a(DE-He213)978-3-642-21137-9 035 $a(MiAaPQ)EBC3067027 035 $a(PPN)156314533 035 $a(EXLCZ)992670000000100001 100 $a20110728d2011 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aAsymptotic Stability of Steady Compressible Fluids$b[electronic resource] /$fby Mariarosaria Padula 205 $a1st ed. 2011. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2011. 215 $a1 online resource (XIV, 235 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2024 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-21136-4 320 $aIncludes bibliographical references and index. 327 $a1 Topics in Fluid Mechanics -- 2 Topics in Stability -- 3 Barotropic Fluids with Rigid Boundary -- 4 Isothermal Fluids with Free Boundaries -- 5 Polytropic Fluids with Rigid Boundary. 330 $aThis volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A heat-conducting, viscous polytropic gas. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2024 606 $aApplied mathematics 606 $aEngineering mathematics 606 $aMathematical models 606 $aPartial differential equations 606 $aPhysics 606 $aFluids 606 $aMechanics 606 $aMechanics, Applied 606 $aApplications of Mathematics$3https://scigraph.springernature.com/ontologies/product-market-codes/M13003 606 $aMathematical Modeling and Industrial Mathematics$3https://scigraph.springernature.com/ontologies/product-market-codes/M14068 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 606 $aFluid- and Aerodynamics$3https://scigraph.springernature.com/ontologies/product-market-codes/P21026 606 $aTheoretical and Applied Mechanics$3https://scigraph.springernature.com/ontologies/product-market-codes/T15001 615 0$aApplied mathematics. 615 0$aEngineering mathematics. 615 0$aMathematical models. 615 0$aPartial differential equations. 615 0$aPhysics. 615 0$aFluids. 615 0$aMechanics. 615 0$aMechanics, Applied. 615 14$aApplications of Mathematics. 615 24$aMathematical Modeling and Industrial Mathematics. 615 24$aPartial Differential Equations. 615 24$aMathematical Methods in Physics. 615 24$aFluid- and Aerodynamics. 615 24$aTheoretical and Applied Mechanics. 676 $a620.1/0640151 700 $aPadula$b Mariarosaria$4aut$4http://id.loc.gov/vocabulary/relators/aut$0478955 906 $aBOOK 912 $a996466628803316 996 $aAsymptotic stability of steady compressible fluids$9261818 997 $aUNISA