LEADER 02884nam 2200637 450 001 996466623803316 005 20220908120113.0 010 $a3-540-68590-1 024 7 $a10.1007/BFb0094029 035 $a(CKB)1000000000437382 035 $a(SSID)ssj0000325849 035 $a(PQKBManifestationID)12098576 035 $a(PQKBTitleCode)TC0000325849 035 $a(PQKBWorkID)10264839 035 $a(PQKB)11384566 035 $a(DE-He213)978-3-540-68590-6 035 $a(MiAaPQ)EBC5591765 035 $a(Au-PeEL)EBL5591765 035 $a(OCoLC)1066186285 035 $a(MiAaPQ)EBC6842209 035 $a(Au-PeEL)EBL6842209 035 $a(OCoLC)1159643399 035 $a(PPN)155192566 035 $a(EXLCZ)991000000000437382 100 $a20220908d1996 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aProbabilities on the Heisenberg group $elimit theorems and Brownian motion /$fDaniel Neuenschwander 205 $a1st ed. 1996. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1996] 210 4$dİ1996 215 $a1 online resource (VIII, 148 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1630 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-61453-2 327 $aProbability theory on simply connected nilpotent Lie groups -- Brownian motions on H -- Other limit theorems on H. 330 $aThe Heisenberg group comes from quantum mechanics and is the simplest non-commutative Lie group. While it belongs to the class of simply connected nilpotent Lie groups, it turns out that its special structure yields many results which (up to now) have not carried over to this larger class. This book is a survey of probabilistic results on the Heisenberg group. The emphasis lies on limit theorems and their relation to Brownian motion. Besides classical probability tools, non-commutative Fourier analysis and functional analysis (operator semigroups) comes in. The book is intended for probabilists and analysts interested in Lie groups, but given the many applications of the Heisenberg group, it will also be useful for theoretical phycisists specialized in quantum mechanics and for engineers. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1630 606 $aBrownian motion processes 606 $aLimit theorems (Probability theory) 606 $aProbability measures 615 0$aBrownian motion processes. 615 0$aLimit theorems (Probability theory) 615 0$aProbability measures. 676 $a519.2 700 $aNeuenschwander$b Daniel$f1963-$061062 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466623803316 996 $aProbabilities on the Heisenberg group$978059 997 $aUNISA