LEADER 03619nam 22006495 450 001 996466615803316 005 20200703033744.0 010 $a3-642-36297-4 024 7 $a10.1007/978-3-642-36297-2 035 $a(CKB)3280000000020589 035 $a(SSID)ssj0000904331 035 $a(PQKBManifestationID)11545184 035 $a(PQKBTitleCode)TC0000904331 035 $a(PQKBWorkID)10920677 035 $a(PQKB)11682135 035 $a(DE-He213)978-3-642-36297-2 035 $a(MiAaPQ)EBC3107072 035 $a(PPN)169139247 035 $a(EXLCZ)993280000000020589 100 $a20130403d2013 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aTopics in Mathematical Fluid Mechanics$b[electronic resource] $eCetraro, Italy 2010, Editors: Hugo Beirão da Veiga, Franco Flandoli /$fby Peter Constantin, Arnaud Debussche, Giovanni P. Galdi, Michael R??i?ka, Gregory Seregin 205 $a1st ed. 2013. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2013. 215 $a1 online resource (IX, 313 p.) 225 1 $aC.I.M.E. Foundation Subseries ;$v2073 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-36296-6 327 $aFluids and Particles -- Stochastic Navier-Stokes Equations: well Posedness and Ergodic Properties -- Topics in the Mathematical Theory of Fluid-Solid Interaction -- Analysis of Generalized Newtonian Fluids -- Local Regularity Theory for the Navier-Stokes Equations. 330 $aThis volume brings together five contributions to mathematical fluid mechanics, a classical but still very active research field which overlaps with physics and engineering. The contributions cover not only the classical Navier-Stokes equations for an incompressible Newtonian fluid, but also generalized Newtonian fluids, fluids interacting with particles and with solids, and stochastic models. The questions addressed in the lectures range from the basic problems of existence of weak and more regular solutions, the local regularity theory and analysis of potential singularities, qualitative and quantitative results about the behavior in special cases, asymptotic behavior, statistical properties and ergodicity. 410 0$aC.I.M.E. Foundation Subseries ;$v2073 606 $aPartial differential equations 606 $aFluids 606 $aFluid mechanics 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aFluid- and Aerodynamics$3https://scigraph.springernature.com/ontologies/product-market-codes/P21026 606 $aEngineering Fluid Dynamics$3https://scigraph.springernature.com/ontologies/product-market-codes/T15044 615 0$aPartial differential equations. 615 0$aFluids. 615 0$aFluid mechanics. 615 14$aPartial Differential Equations. 615 24$aFluid- and Aerodynamics. 615 24$aEngineering Fluid Dynamics. 676 $a515.353 700 $aConstantin$b Peter$4aut$4http://id.loc.gov/vocabulary/relators/aut$0338209 702 $aDebussche$b Arnaud$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aGaldi$b Giovanni P$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aR??i?ka$b Michael$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aSeregin$b Gregory$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a996466615803316 996 $aTopics in mathematical fluid mechanics$9258674 997 $aUNISA