LEADER 03013oam 2200613 450 001 996466615503316 005 20230922171630.0 010 $a1-280-61834-5 010 $a9786610618347 010 $a3-540-34806-9 024 7 $a10.1007/b128410 035 $a(CKB)1000000000282969 035 $a(EBL)3036460 035 $a(SSID)ssj0000275505 035 $a(PQKBManifestationID)11210180 035 $a(PQKBTitleCode)TC0000275505 035 $a(PQKBWorkID)10219620 035 $a(PQKB)10441640 035 $a(DE-He213)978-3-540-34806-1 035 $a(MiAaPQ)EBC3036460 035 $a(MiAaPQ)EBC6426713 035 $a(PPN)123719992 035 $a(EXLCZ)991000000000282969 100 $a20210604d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe wulff crystal in ising and percolation models $eEcole d'Eté de Probabilités de Saint-Flour XXXIV - 2004 /$fRaphaël Cerf, edited by Jean Picard 205 $a1st ed. 2006. 210 1$aGermany :$cSpringer,$d[2006] 210 4$d©2006 215 $a1 online resource (266 p.) 225 1 $aÉcole d'Été de Probabilités de Saint-Flour,$x0721-5363 ;$v1878 300 $aDescription based upon print version of record. 311 $a3-540-30988-8 320 $aIncludes bibliographical references and index. 327 $aPhase coexistence and subadditivity -- Presentation of the models -- Ising model -- Bernoulli percolation -- FK or random cluster model -- Main results -- The Wulff crystal -- Large deviation principles -- Large deviation theory -- Surface large deviation principles -- Volume large deviations -- Fundamental probabilistic estimates -- Coarse graining -- Decoupling -- Surface tension -- Interface estimate -- Basic geometric tools -- Sets of finite perimeter -- Surface energy -- The Wulff theorem -- Final steps of the proofs -- LDP for the cluster shapes -- Enhanced upper bound -- LDP for FK percolation -- LDP for Ising. 330 $aThis volume is a synopsis of recent works aiming at a mathematically rigorous justification of the phase coexistence phenomenon, starting from a microscopic model. It is intended to be self-contained. Those proofs that can be found only in research papers have been included, whereas results for which the proofs can be found in classical textbooks are only quoted. 410 0$aÉcole d'Été de Probabilités de Saint-Flour,$x0721-5363 ;$v1878 606 $aPhase transformations (Statistical physics) 615 0$aPhase transformations (Statistical physics) 676 $a530.13 700 $aCerf$b Raphaël$0472495 702 $aPicard$b Jean$f1959- 712 12$aE?cole d'e?te? de probabilite?s de Saint-Flour$d(34th :$f2004 :$eSaint-Flour, France) 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bUtOrBLW 906 $aBOOK 912 $a996466615503316 996 $aThe wulff crystal in ising and percolation models$92900490 997 $aUNISA LEADER 01111cam0-2200349---450 001 990004018110403321 005 20241002093823.0 100 $a19990604d1980----km-y0itay50------ba 101 1 $aita$ceng 102 $aIT 105 $ay-------001yy 200 1 $aMito e significato$ecinque conversazioni radiofoniche$fClaude Lévi-Strauss$gintroduzione di Cesare Segre 210 $aMilano$cIl Saggiatore$d1980 215 $a67 p.$d20 cm 225 1 $a<>impresa scientifica$v4 454 0$12001$aMyth and meaning$914657 610 0 $aAntropologia culturale 676 $a194$v23$zita 676 $a306$v23$zita 700 1$aLévi-Strauss,$bClaude$f<1908-2009>$091732 702 1$aSegre,$bCesare$f<1928-2014> 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990004018110403321 952 $a300 LEVI 09$bDip. fil. 436$fFLFBC 952 $a306 LEV 1 BIS$b32132 Fil. Mod.$fNAP03 952 $a306 LEV 1 TER$bIst. st. fil. 7515$fFLFBC 952 $aDAM C65 LESC 07$b2024/7308$fFLFBC 959 $aFLFBC 959 $aNAP03 996 $aMyth and meaning$914657 997 $aUNINA