LEADER 04007nam 22006495 450 001 996466605303316 005 20200629215524.0 010 $a3-642-28285-7 024 7 $a10.1007/978-3-642-28285-0 035 $a(CKB)3400000000085195 035 $a(SSID)ssj0000679708 035 $a(PQKBManifestationID)11368133 035 $a(PQKBTitleCode)TC0000679708 035 $a(PQKBWorkID)10625223 035 $a(PQKB)11071371 035 $a(DE-He213)978-3-642-28285-0 035 $a(MiAaPQ)EBC3070604 035 $a(PPN)165085495 035 $a(EXLCZ)993400000000085195 100 $a20120507d2012 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aDegenerate Nonlinear Diffusion Equations$b[electronic resource] /$fby Angelo Favini, Gabriela Marinoschi 205 $a1st ed. 2012. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2012. 215 $a1 online resource (XXI, 143 p. 12 illus., 9 illus. in color.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2049 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-28284-9 320 $aIncludes bibliographical references (p. 135-139) and index. 327 $a1 Parameter identification in a parabolic-elliptic degenerate problem -- 2 Existence for diffusion degenerate problems -- 3 Existence for nonautonomous parabolic-elliptic degenerate diffusion Equations -- 4 Parameter identification in a parabolic-elliptic degenerate problem. 330 $aThe aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asymptotic behaviour, discretization schemes, coefficient identification, and to introduce relevant solving methods for each of them. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2049 606 $aPartial differential equations 606 $aCalculus of variations 606 $aApplied mathematics 606 $aEngineering mathematics 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aCalculus of Variations and Optimal Control; Optimization$3https://scigraph.springernature.com/ontologies/product-market-codes/M26016 606 $aApplications of Mathematics$3https://scigraph.springernature.com/ontologies/product-market-codes/M13003 615 0$aPartial differential equations. 615 0$aCalculus of variations. 615 0$aApplied mathematics. 615 0$aEngineering mathematics. 615 14$aPartial Differential Equations. 615 24$aCalculus of Variations and Optimal Control; Optimization. 615 24$aApplications of Mathematics. 676 $a515.353 700 $aFavini$b Angelo$4aut$4http://id.loc.gov/vocabulary/relators/aut$056805 702 $aMarinoschi$b Gabriela$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a996466605303316 996 $aDegenerate Nonlinear Diffusion Equations$92830739 997 $aUNISA