LEADER 02432nam 2200589 450 001 996466604603316 005 20220823210912.0 010 $a3-540-35832-3 024 7 $a10.1007/BFb0071097 035 $a(CKB)1000000000438743 035 $a(SSID)ssj0000321556 035 $a(PQKBManifestationID)12069514 035 $a(PQKBTitleCode)TC0000321556 035 $a(PQKBWorkID)10281700 035 $a(PQKB)11119030 035 $a(DE-He213)978-3-540-35832-9 035 $a(MiAaPQ)EBC5585580 035 $a(Au-PeEL)EBL5585580 035 $a(OCoLC)1066198752 035 $a(MiAaPQ)EBC6819189 035 $a(Au-PeEL)EBL6819189 035 $a(OCoLC)793077852 035 $a(PPN)15522123X 035 $a(EXLCZ)991000000000438743 100 $a20220823d1968 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aAutomorphic functions and number theory /$fGoro Shimura 205 $a1st ed. 1968. 210 1$aBerlin, Heidelberg :$cSpringer,$d[1968] 210 4$dİ1968 215 $a1 online resource (VIII, 72 p.) 225 1 $aLecture Notes in Mathematics ;$vVolume 54 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-387-04224-5 311 $a3-540-04224-5 327 $aAutomorphic functions on the upper half plane, especially modular functions -- Elliptic curves and the fundamental theorems of the classical theory of complex multiplication -- Relation between the points of finite order on an elliptic curve and the modular functions of higher level -- Abelian varieties and siegel modular functions -- The endomorphism-ring of an abelian variety; the field of moduli of an abelian variety with many complex multiplications -- The class-field-theoretical characterization of K? (?(z)) -- A further method of constructing class fields -- The hasse zeta function of an algebraic curve -- Infinite galois extensions with l-adic representations -- Further generalization and concluding remarks. 410 0$aLecture notes in mathematics (Berlin) ;$vVolume 54. 606 $aNumber theory 615 0$aNumber theory. 676 $a512.7 700 $aShimura$b Goro?$f1930-2019,$053744 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466604603316 996 $aAutomorphic functions and number theory$983183 997 $aUNISA