LEADER 02390nam 2200613 450 001 996466604203316 005 20220305160518.0 010 $a3-540-49634-3 024 7 $a10.1007/BFb0093653 035 $a(CKB)1000000000437366 035 $a(SSID)ssj0000322250 035 $a(PQKBManifestationID)12087892 035 $a(PQKBTitleCode)TC0000322250 035 $a(PQKBWorkID)10289901 035 $a(PQKB)10522905 035 $a(DE-He213)978-3-540-49634-2 035 $a(MiAaPQ)EBC5585466 035 $a(Au-PeEL)EBL5585466 035 $a(OCoLC)1066185145 035 $a(MiAaPQ)EBC6842889 035 $a(Au-PeEL)EBL6842889 035 $a(PPN)155176757 035 $a(EXLCZ)991000000000437366 100 $a20220305d1996 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aConfiguration spaces over Hilbert schemes and applications /$fDanielle Dias, Patrick Le Barz 205 $a1st ed. 1996. 210 1$aBerlin :$cSpringer,$d[1996] 210 4$dİ1996 215 $a1 online resource (VIII, 144 p.) 225 1 $aLecture notes in mathematics ;$v1647 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-62050-8 320 $aIncludes bibliographical references and index. 330 $aThe main themes of this book are to establish the triple formula without any hypotheses on the genericity of the morphism, and to develop a theory of complete quadruple points, which is a first step towards proving the quadruple point formula under less restrictive hypotheses. This book should be of interest to graduate students and researchers in the field of algebraic geometry. The reader is expected to have some basic knowledge of enumerative algebraic geometry and pointwise Hilbert schemes. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1647. 606 $aHilbert schemes 606 $aIntersection theory (Mathematics) 615 0$aHilbert schemes. 615 0$aIntersection theory (Mathematics) 676 $a516.35 700 $aDias$b Danielle$f1967-$0441060 702 $aLe Barz$b Patrick$f1948- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466604203316 996 $aConfiguration spaces over Hilbert schemes and applications$91502031 997 $aUNISA