LEADER 02107nam 2200589 450 001 996466602203316 005 20220913115731.0 010 $a3-540-39641-1 024 7 $a10.1007/BFb0075033 035 $a(CKB)1000000000437653 035 $a(SSID)ssj0000321458 035 $a(PQKBManifestationID)12133489 035 $a(PQKBTitleCode)TC0000321458 035 $a(PQKBWorkID)10280929 035 $a(PQKB)10702994 035 $a(DE-He213)978-3-540-39641-3 035 $a(MiAaPQ)EBC5595960 035 $a(Au-PeEL)EBL5595960 035 $a(OCoLC)1076232129 035 $a(MiAaPQ)EBC6842895 035 $a(Au-PeEL)EBL6842895 035 $a(PPN)155222724 035 $a(EXLCZ)991000000000437653 100 $a20220913d1985 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aAsymptotic expansions for pseudodifferential operators on bounded domains /$fHarold Widom 205 $a1st ed. 1985. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1985] 210 4$d©1985 215 $a1 online resource (VI, 150 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1152 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-15701-8 327 $aDerivation of the series -- The Szegö and heat expansions -- f(k)(?; ?i) in the hermitian case -- Trace formulas -- Proof of the szegö expansion in the nonself-adjoint case -- Proof of the Szegö expansion in the self-adjoint case -- Proof of the heat expansion. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1152 606 $aAsymptotic expansions 606 $aPseudodifferential operators 615 0$aAsymptotic expansions. 615 0$aPseudodifferential operators. 676 $a515.7242 700 $aWidom$b Harold$f1932-$055195 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466602203316 996 $aAsymptotic expansions for pseudodifferential operators on bounded domains$9346364 997 $aUNISA