LEADER 03194nam 2200661 450 001 996466599903316 005 20220909121741.0 010 $a3-540-47628-8 024 7 $a10.1007/BFb0086765 035 $a(CKB)1000000000437144 035 $a(SSID)ssj0000322609 035 $a(PQKBManifestationID)12091386 035 $a(PQKBTitleCode)TC0000322609 035 $a(PQKBWorkID)10287690 035 $a(PQKB)11578258 035 $a(DE-He213)978-3-540-47628-3 035 $a(MiAaPQ)EBC5585062 035 $a(Au-PeEL)EBL5585062 035 $a(OCoLC)1066179020 035 $a(MiAaPQ)EBC6842260 035 $a(Au-PeEL)EBL6842260 035 $a(PPN)155229427 035 $a(EXLCZ)991000000000437144 100 $a20220909d1993 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aDifferential topology of complex surfaces $eelliptic surfaces with Pg = 1 : smooth classification /$fJohn W. Morgan and Kieran G. O'Grady 205 $a1st ed. 1993. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1993] 210 4$dİ1993 215 $a1 online resource (VII, 224 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1545 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-387-56674-0 311 $a3-540-56674-0 327 $aUnstable polynomials of algebraic surfaces -- Identification of ?3,r (S, H) with ?3(S) -- Certain moduli spaces for bundles on elliptic surfaces with p g = 1 -- Representatives for classes in the image of the ?-map -- The blow-up formula -- The proof of Theorem 1.1.1. 330 $aThis book is about the smooth classification of a certain class of algebraicsurfaces, namely regular elliptic surfaces of geometric genus one, i.e. elliptic surfaces with b1 = 0 and b2+ = 3. The authors give a complete classification of these surfaces up to diffeomorphism. They achieve this result by partially computing one of Donalson's polynomial invariants. The computation is carried out using techniques from algebraic geometry. In these computations both thebasic facts about the Donaldson invariants and the relationship of the moduli space of ASD connections with the moduli space of stable bundles are assumed known. Some familiarity with the basic facts of the theory of moduliof sheaves and bundles on a surface is also assumed. This work gives a good and fairly comprehensive indication of how the methods of algebraic geometry can be used to compute Donaldson invariants. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1545 606 $aElliptic surfaces 606 $aDifferential topology 606 $aGeometry, Differential 615 0$aElliptic surfaces. 615 0$aDifferential topology. 615 0$aGeometry, Differential. 676 $a514.34 686 $a57R50$2msc 700 $aMorgan$b John$f1946 March 21-$057422 702 $aO'Grady$b Kieran G.$f1958- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466599903316 996 $aDifferential topology of complex surfaces$9262385 997 $aUNISA