LEADER 01383nam0 2200313 i 450 001 SUN0034096 005 20140103121130.58 010 $a88-15-10293-0 100 $a20050317d2005 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aPatti territoriali$elezioni per lo sviluppo$fPiera Magnatti ... [et al.] 210 $aBologna$cIl mulino$dc2005 215 $aVI, 149 p.$d21 cm. 410 1$1001SUN0008390$12001 $aRicerca$1210 $aBologna$cIl mulino. 606 $aSviluppo economico$2FI$3SUNC001540 620 $dBologna$3SUNL000003 676 $a338.945$cSviluppo economico. Italia$v21 702 1$aMagnatti$b, Piera$3SUNV028687 712 $aIl mulino$3SUNV000011$4650 801 $aIT$bSOL$c20181109$gRICA 912 $aSUN0034096 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI ECONOMIA$d03 PREST IIIMa6 $e03 7797 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00 CONS VIII.Eo.557 $e00 27129 995 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI ECONOMIA$bIT-CE0106$h7797$kPREST IIIMa6$oc$qa 995 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$h27129$kCONS VIII.Eo.557$op$qa 996 $aPatti territoriali$9756767 997 $aUNICAMPANIA LEADER 03146nam 2200529 450 001 996466597603316 005 20220112163302.0 010 $a3-662-15942-2 024 7 $a10.1007/978-3-662-15942-2 035 $a(CKB)3390000000043614 035 $a(DE-He213)978-3-662-15942-2 035 $a(MiAaPQ)EBC5579218 035 $a(MiAaPQ)EBC6593020 035 $a(Au-PeEL)EBL5579218 035 $a(OCoLC)1066190755 035 $a(Au-PeEL)EBL6593020 035 $a(OCoLC)1250084780 035 $a(PPN)238018954 035 $a(EXLCZ)993390000000043614 100 $a20220112d1964 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStable homotopy theory $electures delivered at the University of California at Berkeley 1961 /$fJ. Frank Adams 205 $a1st ed. 1964. 210 1$aBerlin :$cSpringer-Verlag,$d[1964] 210 4$dİ1964 215 $a1 online resource (III, 77 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v3 311 $a3-662-15944-9 327 $a1. Introduction -- 2. Primary operations. (Steenrod squares, Eilenberg-MacLane spaces, Milnor?s work on the Steenrod algebra.) -- 3. Stable homotopy theory. (Construction and properties of a category of stable objects.) -- 4. Applications of homological algebra to stable homotopy theory. (Spectral sequences, etc.) -- 5. Theorems of periodicity and approximation in homological algebra -- 6. Comments on prospective applications of 5, work in progress, etc. 330 $aBefore I get down to the business of exposition, I'd like to offer a little motivation. I want to show that there are one or two places in homotopy theory where we strongly suspect that there is something systematic going on, but where we are not yet sure what the system is. The first question concerns the stable J-homomorphism. I recall that this is a homomorphism J: ~ (SQ) ~ ~S = ~ + (Sn), n large. r r r n It is of interest to the differential topologists. Since Bott, we know that ~ (SO) is periodic with period 8: r 6 8 r = 1 2 3 4 5 7 9· . · Z o o o z On the other hand, ~S is not known, but we can nevertheless r ask about the behavior of J. The differential topologists prove: 2 Th~~: If I' = ~ - 1, so that 'IT"r(SO) ~ 2, then J('IT"r(SO)) = 2m where m is a multiple of the denominator of ~/4k th (l\. being in the Pc Bepnoulli numher.) Conject~~: The above result is best possible, i.e. J('IT"r(SO)) = 2m where m 1s exactly this denominator. status of conJectuI'e ~ No proof in sight. Q9njecture Eo If I' = 8k or 8k + 1, so that 'IT"r(SO) = Z2' then J('IT"r(SO)) = 2 , 2 status of conjecture: Probably provable, but this is work in progl'ess. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v3 606 $aMathematics 615 0$aMathematics. 676 $a510 686 $a55P42$2msc 700 $aAdams$b J. Frank$g(John Frank),$041912 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466597603316 996 $aStable homotopy theory$980415 997 $aUNISA