LEADER 01350nam 2200277la 450 001 9910482544103321 005 20221108064802.0 035 $a(UK-CbPIL)2090361600 035 $a(CKB)5500000000091732 035 $a(EXLCZ)995500000000091732 100 $a20210618d1560 uy | 101 0 $alat 135 $aurcn||||a|bb| 200 10$aAlexii Pedemontani [pseud.? i. e. Girolamo Ruscelli?] De secretis libri mira quadam rerum varietate utilitateque referti, longe castigatiores et ampliores quam priore editione / Nam sex prioribus, septimus accessit ex ejusdem authoris appendice factus: omnes ex italico sermone in Latinum conversi. Jo. Jacobo Weckero ... interprete$b[electronic resource] 210 $aBasel $cPeter Perna$d1560 215 $aOnline resource ([8] l. (last blank), 354 p., [15] l. , (8vo)) 300 $aReproduction of original in The Wellcome Library, London. 700 $aRuscelli$b Girolamo$fapproximately 1565.$0196031 701 $aRuscelli$b Girolamo$fapproximately 1565.$0196031 701 $aWecker$b Johann Jacob$f1528-1586.$0796030 801 0$bUk-CbPIL 801 1$bUk-CbPIL 906 $aBOOK 912 $a9910482544103321 996 $aAlexii Pedemontani De secretis libri mira quadam rerum varietate utilitateque referti, longe castigatiores et ampliores quam priore editione$92287864 997 $aUNINA LEADER 03146nam 2200529 450 001 996466597603316 005 20220112163302.0 010 $a3-662-15942-2 024 7 $a10.1007/978-3-662-15942-2 035 $a(CKB)3390000000043614 035 $a(DE-He213)978-3-662-15942-2 035 $a(MiAaPQ)EBC5579218 035 $a(MiAaPQ)EBC6593020 035 $a(Au-PeEL)EBL5579218 035 $a(OCoLC)1066190755 035 $a(Au-PeEL)EBL6593020 035 $a(OCoLC)1250084780 035 $a(PPN)238018954 035 $a(EXLCZ)993390000000043614 100 $a20220112d1964 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStable homotopy theory $electures delivered at the University of California at Berkeley 1961 /$fJ. Frank Adams 205 $a1st ed. 1964. 210 1$aBerlin :$cSpringer-Verlag,$d[1964] 210 4$dİ1964 215 $a1 online resource (III, 77 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v3 311 $a3-662-15944-9 327 $a1. Introduction -- 2. Primary operations. (Steenrod squares, Eilenberg-MacLane spaces, Milnor?s work on the Steenrod algebra.) -- 3. Stable homotopy theory. (Construction and properties of a category of stable objects.) -- 4. Applications of homological algebra to stable homotopy theory. (Spectral sequences, etc.) -- 5. Theorems of periodicity and approximation in homological algebra -- 6. Comments on prospective applications of 5, work in progress, etc. 330 $aBefore I get down to the business of exposition, I'd like to offer a little motivation. I want to show that there are one or two places in homotopy theory where we strongly suspect that there is something systematic going on, but where we are not yet sure what the system is. The first question concerns the stable J-homomorphism. I recall that this is a homomorphism J: ~ (SQ) ~ ~S = ~ + (Sn), n large. r r r n It is of interest to the differential topologists. Since Bott, we know that ~ (SO) is periodic with period 8: r 6 8 r = 1 2 3 4 5 7 9· . · Z o o o z On the other hand, ~S is not known, but we can nevertheless r ask about the behavior of J. The differential topologists prove: 2 Th~~: If I' = ~ - 1, so that 'IT"r(SO) ~ 2, then J('IT"r(SO)) = 2m where m is a multiple of the denominator of ~/4k th (l\. being in the Pc Bepnoulli numher.) Conject~~: The above result is best possible, i.e. J('IT"r(SO)) = 2m where m 1s exactly this denominator. status of conJectuI'e ~ No proof in sight. Q9njecture Eo If I' = 8k or 8k + 1, so that 'IT"r(SO) = Z2' then J('IT"r(SO)) = 2 , 2 status of conjecture: Probably provable, but this is work in progl'ess. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v3 606 $aMathematics 615 0$aMathematics. 676 $a510 686 $a55P42$2msc 700 $aAdams$b J. Frank$g(John Frank),$041912 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466597603316 996 $aStable homotopy theory$980415 997 $aUNISA LEADER 01673nas 22004693 450 001 996279572803316 005 20200911055719.2 011 $a2379-6782 035 $a(DE-599)ZDB2561971-8 035 $a(OCoLC)665171277 035 $a(CKB)110992357337776 035 $a(CONSER)--2015201201 035 $a(EXLCZ)99110992357337776 100 $a19800109b19631964 o-- a 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aIEEE transactions on applications and industry 210 1$aNew York, N.Y. :$cInstitute of Electrical and Electronics Engineers,$dc1963-c1965. 311 $a0536-1524 517 1 $aInstitute of Electrical and Electronics Engineers transactions on applications and industry 517 1 $aI.E.E.E. transactions on applications and industry 517 1 $aTransactions on applications and industry 517 1 $aApplications and industry 531 $aIEEE T APPL IND 531 $aIEEE TRANS. APPL. INDUS 531 0 $aIEEE trans. appl. ind. 606 $aElectrical engineering$vPeriodicals 606 $aElectrical engineering$2fast$3(OCoLC)fst01728596 608 $aPeriodicals.$2fast 610 $aElectrical Engineering 615 0$aElectrical engineering 615 7$aElectrical engineering. 676 $a621.3/05 712 02$aInstitute of Electrical and Electronics Engineers. 712 02$aInstitute of Electrical and Electronics Engineers.$bTechnical Operations Committee. 906 $aJOURNAL 912 $a996279572803316 996 $aIEEE transactions on applications and industry$9796239 997 $aUNISA LEADER 02043nam 2200505 450 001 9910712812903321 005 20200213151934.0 035 $a(CKB)5470000002498058 035 $a(OCoLC)1140204758 035 $a(EXLCZ)995470000002498058 100 $a20200211d2019 ua 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aVisual and MSR grades of lumber are not two-parameter Weibulls and why it matters (with a discussion of censored data fitting) /$fSteve, P. Verrill [and four others] 210 1$aMadison, WI :$cUnited States Department of Agriculture, Forest Service, Forest Products Laboratory,$d2019. 215 $a1 online resource (40 pages) 225 1 $aResearch paper FPL-RP ;$v703 300 $a"December 2019." 320 $aIncludes bibliographical references (pages 13-15). 517 $aVisual and MSR grades of lumber are not two-parameter Weibulls and why it matters 606 $aElasticity 606 $aFlexure$xMathematical models 606 $aStrength of materials$xMathematical models 606 $aCensored observations (Statistics) 606 $aWood$xMechanical properties$xMathematical models 606 $aWood$xElastic properties$xMathematical models 606 $aWeibull distribution 615 0$aElasticity. 615 0$aFlexure$xMathematical models. 615 0$aStrength of materials$xMathematical models. 615 0$aCensored observations (Statistics) 615 0$aWood$xMechanical properties$xMathematical models. 615 0$aWood$xElastic properties$xMathematical models. 615 0$aWeibull distribution. 700 $aVerrill$b S. P.$01389433 712 02$aForest Products Laboratory (U.S.), 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910712812903321 996 $aVisual and MSR grades of lumber are not two-parameter Weibulls and why it matters (with a discussion of censored data fitting)$93541773 997 $aUNINA