LEADER 02341nam 2200685 450 001 996466597103316 005 20220304130709.0 010 $a3-540-38666-1 024 7 $a10.1007/BFb0064288 035 $a(CKB)1000000000437791 035 $a(SSID)ssj0000326808 035 $a(PQKBManifestationID)12124355 035 $a(PQKBTitleCode)TC0000326808 035 $a(PQKBWorkID)10297445 035 $a(PQKB)11352794 035 $a(DE-He213)978-3-540-38666-7 035 $a(MiAaPQ)EBC5591586 035 $a(Au-PeEL)EBL5591586 035 $a(OCoLC)1066190942 035 $a(MiAaPQ)EBC6842675 035 $a(Au-PeEL)EBL6842675 035 $a(OCoLC)1113569289 035 $a(PPN)155190024 035 $a(EXLCZ)991000000000437791 100 $a20220304d1983 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aSpectral theory of Banach space operators $eCk-classification, abstract volterra operators, similarity, spectrality, local analysis /$fS. Kantorovitz 205 $a1st ed. 1983. 210 1$aBerlin :$cSpringer,$d[1983] 210 4$dİ1983 215 $a1 online resource (VI, 182 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1012 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-12673-2 327 $aOperational calculus -- Examples -- First reduction -- Second reduction -- Volterra elements -- The family S+?V -- Convolution operators in Lp -- Some regular semigroups -- Similarity -- Spectral analysis -- The family S+?V, S unbounded -- Similarity (continued) -- Singular Cn-operators -- Local analysis. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1012 606 $aOperator theory$vProblems, exercises, etc 615 0$aOperator theory 676 $a515.724 686 $a47A65$2msc 686 $a46H30$2msc 686 $a47A10$2msc 686 $a47A55$2msc 686 $a47A60$2msc 686 $a47B47$2msc 686 $a47D05$2msc 686 $a47D10$2msc 686 $a47D40$2msc 700 $aKantorovitz$b Shmuel$f1935-$054813 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466597103316 996 $aSpectral theory of Banach space operators$983136 997 $aUNISA