LEADER 02568nam 2200601 450 001 996466594403316 005 20220629180353.0 010 $a3-540-69617-2 024 7 $a10.1007/BFb0093525 035 $a(CKB)1000000000437340 035 $a(SSID)ssj0000321114 035 $a(PQKBManifestationID)12131812 035 $a(PQKBTitleCode)TC0000321114 035 $a(PQKBWorkID)10276817 035 $a(PQKB)11083448 035 $a(DE-He213)978-3-540-69617-9 035 $a(MiAaPQ)EBC5610624 035 $a(Au-PeEL)EBL5610624 035 $a(OCoLC)1079007527 035 $a(MiAaPQ)EBC6743002 035 $a(Au-PeEL)EBL6743002 035 $a(OCoLC)1281956800 035 $a(PPN)155173529 035 $a(EXLCZ)991000000000437340 100 $a20220629d1997 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aAlgebraic homogeneous spaces and invariant theory /$fFrank D. Grosshans 205 $a1st ed. 1997. 210 1$aBerlin, Heidelberg :$cSpringer-Verlag,$d[1997] 210 4$dİ1997 215 $a1 online resource (VIII, 152 p.) 225 1 $aLecture Notes in Mathematics ;$vVolume 1673 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-63628-5 327 $aObservable subgroups -- The transfer principle -- Invariants of maximal unipotent subgroups -- Complexity -- Errata. 330 $aThe invariant theory of non-reductive groups has its roots in the 19th century but has seen some very interesting developments in the past twenty years. This book is an exposition of several related topics including observable subgroups, induced modules, maximal unipotent subgroups of reductive groups and the method of U-invariants, and the complexity of an action. Much of this material has not appeared previously in book form. The exposition assumes a basic knowledge of algebraic groups and then develops each topic systematically with applications to invariant theory. Exercises are included as well as many examples, some of which are related to geometry and physics. 410 0$aLecture notes in mathematics (Berlin) ;$vVolume 1673. 606 $aAlgebraic number theory 615 0$aAlgebraic number theory. 676 $a512.74 686 $a13A50$2msc 700 $aGrosshans$b Frank D.$f1942-$057438 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466594403316 996 $aAlgebraic homogeneous spaces and invariant theory$978114 997 $aUNISA