LEADER 02836nam 2200637 450 001 996466593703316 005 20220907004140.0 010 $a3-540-48652-6 024 7 $a10.1007/BFb0073511 035 $a(CKB)1000000000437187 035 $a(SSID)ssj0000322574 035 $a(PQKBManifestationID)12117607 035 $a(PQKBTitleCode)TC0000322574 035 $a(PQKBWorkID)10289028 035 $a(PQKB)11613819 035 $a(DE-He213)978-3-540-48652-7 035 $a(MiAaPQ)EBC5594333 035 $a(Au-PeEL)EBL5594333 035 $a(OCoLC)1076232438 035 $a(MiAaPQ)EBC6841833 035 $a(Au-PeEL)EBL6841833 035 $a(PPN)155205951 035 $a(EXLCZ)991000000000437187 100 $a20220907d1994 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aDifference spaces and invariant linear forms /$fRodney Victor Nillsen 205 $a1st ed. 1994. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1994] 210 4$dİ1994 215 $a1 online resource (XII, 192 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1586 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-58323-8 320 $aIncludes bibliographical references and indexes. 327 $aGeneral and preparatory results -- Multiplication and difference spaces on R n -- Applications to differential and singular integral operators -- Results for L p spaces on general groups. 330 $aDifference spaces arise by taking sums of finite or fractional differences. Linear forms which vanish identically on such a space are invariant in a corresponding sense. The difference spaces of L2 (Rn) are Hilbert spaces whose functions are characterized by the behaviour of their Fourier transforms near, e.g., the origin. One aim is to establish connections between these spaces and differential operators, singular integral operators and wavelets. Another aim is to discuss aspects of these ideas which emphasise invariant linear forms on locally compact groups. The work primarily presents new results, but does so from a clear, accessible and unified viewpoint, which emphasises connections with related work. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1586 606 $aFourier transformations 606 $aHarmonic analysis 606 $aSingular integrals 615 0$aFourier transformations. 615 0$aHarmonic analysis. 615 0$aSingular integrals. 676 $a510 700 $aNillsen$b Rodney Victor$f1945-$060688 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466593703316 996 $aDifference spaces and invariant linear forms$978704 997 $aUNISA