LEADER 03998nam 22007455 450 001 996466592803316 005 20200706072302.0 010 $a3-540-36210-X 024 7 $a10.1007/b80163 035 $a(CKB)1000000000229437 035 $a(SSID)ssj0000324732 035 $a(PQKBManifestationID)12072204 035 $a(PQKBTitleCode)TC0000324732 035 $a(PQKBWorkID)10314318 035 $a(PQKB)11387320 035 $a(DE-He213)978-3-540-36210-4 035 $a(MiAaPQ)EBC6286308 035 $a(MiAaPQ)EBC5591433 035 $a(Au-PeEL)EBL5591433 035 $a(OCoLC)51179421 035 $a(PPN)155220209 035 $a(EXLCZ)991000000000229437 100 $a20121227d2003 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aMeasures with Symmetry Properties$b[electronic resource] /$fby Werner Schindler 205 $a1st ed. 2003. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2003. 215 $a1 online resource (X, 174 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1808 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-00235-9 327 $aIntroduction, Main Theorems: Definitions and Preparatory Lemmata; Definition of Property (*) and Its Implications (Main Theorems); Supplementary Expositions and an Alternate Existence Proof -- Significance, Applicability and Advantages -- Applications: Central Definitions, Theorems and Facts; Equidistribution on the Grassmannian Manifold and Chirotopes; Conjugation-invariant Probability Measures on Compact Connected Lie Groups; Conjugation-invariant Probability Measures on SO(n); Conjugation-invariant Probability Measures on SO(3); The Theorem of Iwasawa and Invariant Measures on Lie Groups; QR-Decomposition on GL(n); Polar Decomposition on GL(n); O(n)-invariant Borel Measures on Pos(n); Biinvariant Borel Measures on GL(n); Symmetries on Finite Spaces -- References -- Glossary -- Index. 330 $aSymmetries and invariance principles play an important role in various branches of mathematics. This book deals with measures having weak symmetry properties. Even mild conditions ensure that all invariant Borel measures on a second countable locally compact space can be expressed as images of specific product measures under a fixed mapping. The results derived in this book are interesting for their own and, moreover, a number of carefully investigated examples underline and illustrate their usefulness and applicability for integration problems, stochastic simulations and statistical applications. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1808 606 $aMeasure theory 606 $aTopological groups 606 $aLie groups 606 $aNumerical analysis 606 $aStatistics  606 $aMeasure and Integration$3https://scigraph.springernature.com/ontologies/product-market-codes/M12120 606 $aTopological Groups, Lie Groups$3https://scigraph.springernature.com/ontologies/product-market-codes/M11132 606 $aNumerical Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M14050 606 $aStatistical Theory and Methods$3https://scigraph.springernature.com/ontologies/product-market-codes/S11001 615 0$aMeasure theory. 615 0$aTopological groups. 615 0$aLie groups. 615 0$aNumerical analysis. 615 0$aStatistics . 615 14$aMeasure and Integration. 615 24$aTopological Groups, Lie Groups. 615 24$aNumerical Analysis. 615 24$aStatistical Theory and Methods. 676 $a515.42 700 $aSchindler$b Werner$4aut$4http://id.loc.gov/vocabulary/relators/aut$0451448 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466592803316 996 $aMeasures with symmetry properties$9145755 997 $aUNISA