LEADER 02850nam 2200649 450 001 996466592003316 005 20220819225413.0 010 $a3-540-48594-5 024 7 $a10.1007/BFb0073564 035 $a(CKB)1000000000437183 035 $a(SSID)ssj0000323310 035 $a(PQKBManifestationID)12072454 035 $a(PQKBTitleCode)TC0000323310 035 $a(PQKBWorkID)10300630 035 $a(PQKB)11236058 035 $a(DE-He213)978-3-540-48594-0 035 $a(MiAaPQ)EBC5594443 035 $a(Au-PeEL)EBL5594443 035 $a(OCoLC)1076240125 035 $a(MiAaPQ)EBC6819058 035 $a(Au-PeEL)EBL6819058 035 $a(OCoLC)793079365 035 $a(PPN)155184040 035 $a(EXLCZ)991000000000437183 100 $a20220819d1994 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aFrom divergent power series to analytic functions $etheory and application of multisummable power series /$fWerner Balser 205 $a1st ed. 1994. 210 1$aBerlin :$cSpringer-Verlag,$d[1994] 210 4$dİ1994 215 $a1 online resource (X, 114 p.) 225 1 $aLecture notes in mathematics (Springer-Verlag) ;$v1582 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-58268-1 320 $aIncludes bibliographical references and index. 327 $aAsymptotic power series -- Laplace and borel transforms -- Summable power series -- Cauchy-Heine transform -- Acceleration operators -- Multisummable power series -- Some equivalent definitions of multisummability -- Formal solutions to non-linear ODE. 330 $aMultisummability is a method which, for certain formal power series with radius of convergence equal to zero, produces an analytic function having the formal series as its asymptotic expansion. This book presents the theory of multisummabi- lity, and as an application, contains a proof of the fact that all formal power series solutions of non-linear meromorphic ODE are multisummable. It will be of use to graduate students and researchers in mathematics and theoretical physics, and especially to those who encounter formal power series to (physical) equations with rapidly, but regularly, growing coefficients. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1582. 606 $aPower series 606 $aAsymptotic expansions 606 $aSummability theory 615 0$aPower series. 615 0$aAsymptotic expansions. 615 0$aSummability theory. 676 $a515.2432 700 $aBalser$b Werner$f1946-$060686 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466592003316 996 $aFrom divergent power series to analytic functions$978717 997 $aUNISA