LEADER 04010nam 22008055 450 001 996466590203316 005 20200704151946.0 010 $a3-540-36074-3 024 7 $a10.1007/b84244 035 $a(CKB)1000000000229420 035 $a(SSID)ssj0000321279 035 $a(PQKBManifestationID)12081773 035 $a(PQKBTitleCode)TC0000321279 035 $a(PQKBWorkID)10262447 035 $a(PQKB)10854765 035 $a(DE-He213)978-3-540-36074-2 035 $a(MiAaPQ)EBC6298431 035 $a(MiAaPQ)EBC5585594 035 $a(Au-PeEL)EBL5585594 035 $a(OCoLC)466113426 035 $a(PPN)155174452 035 $a(EXLCZ)991000000000229420 100 $a20100806d2002 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aAnalytic Capacity, Rectifiability, Menger Curvature and Cauchy Integral$b[electronic resource] /$fby Hervé M. Pajot 205 $a1st ed. 2002. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2002. 215 $a1 online resource (VIII, 119 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1799 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-00001-1 320 $aIncludes bibliographical references (pages 115-118) and index. 327 $aPreface -- Notations and conventions -- Some geometric measures theory -- Jones' traveling salesman theorem -- Menger curvature -- The Cauchy singular integral operator on Ahlfors-regular sets -- Analytic capacity and the Painlevé Problem -- The Denjoy and Vitushkin conjectures -- The capacity $gamma (+)$ and the Painlevé Problem -- Bibliography -- Index. 330 $aBased on a graduate course given by the author at Yale University this book deals with complex analysis (analytic capacity), geometric measure theory (rectifiable and uniformly rectifiable sets) and harmonic analysis (boundedness of singular integral operators on Ahlfors-regular sets). In particular, these notes contain a description of Peter Jones' geometric traveling salesman theorem, the proof of the equivalence between uniform rectifiability and boundedness of the Cauchy operator on Ahlfors-regular sets, the complete proofs of the Denjoy conjecture and the Vitushkin conjecture (for the latter, only the Ahlfors-regular case) and a discussion of X. Tolsa's solution of the Painlevé problem. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1799 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aGeometry 606 $aMeasure theory 606 $aFunctions of complex variables 606 $aFourier analysis 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aGeometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21006 606 $aMeasure and Integration$3https://scigraph.springernature.com/ontologies/product-market-codes/M12120 606 $aFunctions of a Complex Variable$3https://scigraph.springernature.com/ontologies/product-market-codes/M12074 606 $aFourier Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12058 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aGeometry. 615 0$aMeasure theory. 615 0$aFunctions of complex variables. 615 0$aFourier analysis. 615 14$aAnalysis. 615 24$aGeometry. 615 24$aMeasure and Integration. 615 24$aFunctions of a Complex Variable. 615 24$aFourier Analysis. 676 $a515/.42 700 $aPajot$b Hervé M$4aut$4http://id.loc.gov/vocabulary/relators/aut$01060269 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466590203316 996 $aAnalytic Capacity, Rectifiability, Menger Curvature and Cauchy Integral$92512070 997 $aUNISA