LEADER 02704nam 2200613 450 001 996466588003316 005 20220304102312.0 010 $a3-540-69546-X 024 7 $a10.1007/BFb0092686 035 $a(CKB)1000000000437344 035 $a(SSID)ssj0000324455 035 $a(PQKBManifestationID)12133620 035 $a(PQKBTitleCode)TC0000324455 035 $a(PQKBWorkID)10312996 035 $a(PQKB)10867950 035 $a(DE-He213)978-3-540-69546-2 035 $a(MiAaPQ)EBC5610340 035 $a(Au-PeEL)EBL5610340 035 $a(OCoLC)1078997991 035 $a(MiAaPQ)EBC6842652 035 $a(Au-PeEL)EBL6842652 035 $a(OCoLC)1292355847 035 $a(PPN)155215000 035 $a(EXLCZ)991000000000437344 100 $a20220304d1997 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aLink theory in manifolds /$fUwe Kaiser 205 $a1st ed. 1997. 210 1$aBerlin :$cSpringer,$d[1997] 210 4$dİ1997 215 $a1 online resource (XIV, 170 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1669 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-63435-5 327 $aLink bordism in manifolds -- Enumeration of link bordism in 3-manifolds -- Linking number maps -- Surface structures for links in 3-manifolds -- Link invariants in Betti-trivial 3-manifolds -- Link characteristic and band-operations in Betti-trivial 3-manifolds -- 3-dimensional Betti-trivial submanifolds. 330 $aAny topological theory of knots and links should be based on simple ideas of intersection and linking. In this book, a general theory of link bordism in manifolds and universal constructions of linking numbers in oriented 3-manifolds are developed. In this way, classical concepts of link theory in the 3-spheres are generalized to a certain class of oriented 3-manifolds (submanifolds of rational homology 3-spheres). The techniques needed are described in the book but basic knowledge in topology and algebra is assumed. The book should be of interst to those working in topology, in particular knot theory and low-dimensional topology. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1669 606 $aThree-manifolds (Topology)$xData processing 606 $aLink theory 615 0$aThree-manifolds (Topology)$xData processing. 615 0$aLink theory. 676 $a514.3 700 $aKaiser$b Uwe$f1959-$061863 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466588003316 996 $aLink theory in manifolds$983432 997 $aUNISA