LEADER 03197nam 2200649 450 001 996466587703316 005 20211126103912.0 010 $a3-540-38117-1 024 7 $a10.1007/978-3-540-38117-4 035 $a(CKB)1000000000438493 035 $a(SSID)ssj0000323832 035 $a(PQKBManifestationID)12132022 035 $a(PQKBTitleCode)TC0000323832 035 $a(PQKBWorkID)10304041 035 $a(PQKB)10662901 035 $a(DE-He213)978-3-540-38117-4 035 $a(MiAaPQ)EBC3087567 035 $a(MiAaPQ)EBC6571916 035 $a(Au-PeEL)EBL6571916 035 $a(OCoLC)1255238899 035 $a(PPN)15517469X 035 $a(EXLCZ)991000000000438493 100 $a20211126d1987 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aHomotopy limits, completions and localizations /$fA. K. Bousfield, D. M. Kan 205 $a1st ed. 1972. 210 1$aBerlin ;$aHeidelberg :$cSpringer-Verlag,$d[1987] 210 4$d©1987 215 $a1 online resource (VIII, 352 p.) 225 1 $aLecture Notes in Biomathematics ;$v304 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-387-06105-3 311 $a3-540-06105-3 320 $aIncludes bibliographical references and index. 327 $aCompletions and localizations -- The R-completion of a space -- Fibre lemmas -- Tower lemmas -- An R-completion of groups and its relation to the R-completion of spaces -- R-localizations of nilpotent spaces -- p-completions of nilpotent spaces -- A glimpse at the R-completion of non-nilpotent spaces -- Towers of fibrations, cosimplicial spaces and homotopy limits -- Simplicial sets and topological spaces -- Towers of fibrations -- Cosimplicial spaces -- Homotopy inverse limits -- Homotopy direct limits -- Errata -- Erratum to: The R-completion of a space -- Erratum to: Tower lemmas -- Erratum to: p-completions of nilpotent spaces. 330 $aThe main purpose of part I of these notes is to develop for a ring R a functional notion of R-completion of a space X. For R=Zp and X subject to usual finiteness condition, the R-completion coincides up to homotopy, with the p-profinite completion of Quillen and Sullivan; for R a subring of the rationals, the R-completion coincides up to homotopy, with the localizations of Quillen, Sullivan and others. In part II of these notes, the authors have assembled some results on towers of fibrations, cosimplicial spaces and homotopy limits which were needed in the discussions of part I, but which are of some interest in themselves. 410 0$aLecture notes in biomathematics ;$v304. 606 $aAlgebra, Homological 606 $aHomotopy theory 606 $aLocalization theory 615 0$aAlgebra, Homological. 615 0$aHomotopy theory. 615 0$aLocalization theory. 676 $a512.55 700 $aBousfield$b A. K.$f1941-$0284430 702 $aKan$b D. M. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466587703316 996 $aHomotopy limits, completions and localizations$92831143 997 $aUNISA LEADER 01098nam a22002771i 4500 001 991003924189707536 005 20030926155008.0 008 031111s1973 gw |||||||||||||||||ger 020 $a3874521494 035 $ab1249348x-39ule_inst 035 $aARCHE-052675$9ExL 040 $aDip.to Lingue$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a831 100 1 $aEhrismann, Otfrid$0153812 245 14$aDas Nibelungenlied :$babbildungen, transkriptionen und materialien zur gesamten handschriftlichen uberlieferung der 1. und der 30. Aventiure /$chrsg. und eingeleitet von Otfrid Ehrismann 260 $aGöppingen :$bKümmerle,$c1973 300 $a30 p. ;$c30x21 cm 440 0$aLitterae 650 4$aNibelunghi$xStudio critico 650 4$aPoesia tedesca$xNibelunghi 907 $a.b1249348x$b02-04-14$c13-11-03 912 $a991003924189707536 945 $aLE012 831.2 EHR$g1$i2012000219991$lle012$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i12928525$z13-11-03 996 $aNibelungenlied$9183417 997 $aUNISALENTO 998 $ale012$b13-11-03$cm$da $e-$fger$ggw $h4$i1