LEADER 04243nam 22008535 450 001 996466586303316 005 20220524164641.0 010 $a3-540-36125-1 024 7 $a10.1007/b10191 035 $a(CKB)1000000000229428 035 $a(SSID)ssj0000327536 035 $a(PQKBManifestationID)12116680 035 $a(PQKBTitleCode)TC0000327536 035 $a(PQKBWorkID)10301753 035 $a(PQKB)10074579 035 $a(DE-He213)978-3-540-36125-1 035 $a(MiAaPQ)EBC6281600 035 $a(MiAaPQ)EBC5592095 035 $a(Au-PeEL)EBL5592095 035 $a(OCoLC)1066179083 035 $a(PPN)155180339 035 $a(EXLCZ)991000000000229428 100 $a20121227d2003 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aVariational Methods for Crystalline Microstructure - Analysis and Computation$b[electronic resource] /$fby Georg Dolzmann 205 $a1st ed. 2003. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2003. 215 $a1 online resource (XI, 217 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1803 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-00114-X 327 $aIntroduction -- Semiconvex Hull of Compact Sets -- Macroscopic Energy for Nematic Elastomers -- Uniqueness and Stability of Microstructure -- Applications to Martensitic Transformations -- Algorithmic Aspects -- Bibliographic Remarks -- A. Convexity Conditions and Rank-one Connections -- B. Elements of Crystallography -- C. Notation -- References -- Index. 330 $aPhase transformations in solids typically lead to surprising mechanical behaviour with far reaching technological applications. The mathematical modeling of these transformations in the late 80s initiated a new field of research in applied mathematics, often referred to as mathematical materials science, with deep connections to the calculus of variations and the theory of partial differential equations. This volume gives a brief introduction to the essential physical background, in particular for shape memory alloys and a special class of polymers (nematic elastomers). Then the underlying mathematical concepts are presented with a strong emphasis on the importance of quasiconvex hulls of sets for experiments, analytical approaches, and numerical simulations. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1803 606 $aMathematics 606 $aCondensed matter 606 $aPartial differential equations 606 $aNumerical analysis 606 $aPhysics 606 $aMechanics 606 $aMathematics, general$3https://scigraph.springernature.com/ontologies/product-market-codes/M00009 606 $aCondensed Matter Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P25005 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aNumerical Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M14050 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 606 $aClassical Mechanics$3https://scigraph.springernature.com/ontologies/product-market-codes/P21018 615 0$aMathematics. 615 0$aCondensed matter. 615 0$aPartial differential equations. 615 0$aNumerical analysis. 615 0$aPhysics. 615 0$aMechanics. 615 14$aMathematics, general. 615 24$aCondensed Matter Physics. 615 24$aPartial Differential Equations. 615 24$aNumerical Analysis. 615 24$aMathematical Methods in Physics. 615 24$aClassical Mechanics. 676 $a620.11299 686 $a74N15$2msc 686 $a65M20$2msc 686 $a74B20$2msc 700 $aDolzmann$b Georg$4aut$4http://id.loc.gov/vocabulary/relators/aut$067423 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466586303316 996 $aVariational methods for crystalline microstructure$9145757 997 $aUNISA