LEADER 03059nam 2200649 450 001 996466585403316 005 20220908123853.0 010 $a3-540-47180-4 024 7 $a10.1007/BFb0084977 035 $a(CKB)1000000000437044 035 $a(SSID)ssj0000321557 035 $a(PQKBManifestationID)12133178 035 $a(PQKBTitleCode)TC0000321557 035 $a(PQKBWorkID)10280934 035 $a(PQKB)10954074 035 $a(DE-He213)978-3-540-47180-6 035 $a(MiAaPQ)EBC5585791 035 $a(Au-PeEL)EBL5585791 035 $a(OCoLC)1066185803 035 $a(MiAaPQ)EBC6842219 035 $a(Au-PeEL)EBL6842219 035 $a(PPN)155189212 035 $a(EXLCZ)991000000000437044 100 $a20220908d1990 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 00$aAutomorphism groups of compact bordered Klein surfaces $ea combinatorial approach /$fedited by Emilio Bujalance [and three others] 205 $a1st ed. 1990. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1990] 210 4$dİ1990 215 $a1 online resource (XIII, 212 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1439 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-52941-1 327 $aPreliminary results -- Klein surfaces as orbit spaces of NEC groups -- Normal NEC subgroups of NEC groups -- Cyclic groups of automorphisms of compact Klein surfaces -- Klein surfaces with groups of automorphisms in prescribed families -- The automorphism group of compact Klein surfaces with one boundary component -- The automorphism group of hyperelliptic compact Klein surfaces with boundary. 330 $aThis research monograph provides a self-contained approach to the problem of determining the conditions under which a compact bordered Klein surface S and a finite group G exist, such that G acts as a group of automorphisms in S. The cases dealt with here take G cyclic, abelian, nilpotent or supersoluble and S hyperelliptic or with connected boundary. No advanced knowledge of group theory or hyperbolic geometry is required and three introductory chapters provide as much background as necessary on non-euclidean crystallographic groups. The graduate reader thus finds here an easy access to current research in this area as well as several new results obtained by means of the same unified approach. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1439 606 $aCurves, Algebraic 606 $aRiemann surfaces 606 $aAutomorphisms 615 0$aCurves, Algebraic. 615 0$aRiemann surfaces. 615 0$aAutomorphisms. 676 $a516.352 686 $a20B25$2msc 686 $a22D45 702 $aBujalance Garci?a$b Emilio 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466585403316 996 $aAutomorphism groups of compact bordered Klein surfaces$92910181 997 $aUNISA