LEADER 00863nam0-22003131i-450- 001 990000691000403321 005 20001010 010 $a0.85139.187.7 035 $a000069100 035 $aFED01000069100 035 $a(Aleph)000069100FED01 035 $a000069100 100 $a20001010d--------km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $aBuilding for Energy Conservation$fPeter Burberry. 210 $aLondon$cArchitectural Press$d1978. 215 $a60 p.$cill.$d30 cm 610 0 $aBioarchitettura 610 0 $aEdifici$aConservazione energetica 700 1$aBurberry,$bPeter$011614 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000691000403321 952 $a01 H 1060$b4512$fDINST 959 $aDINST 996 $aBuilding for Energy Conservation$9324668 997 $aUNINA DB $aING01 LEADER 02045nam 2200589 450 001 996466584303316 005 20220909004226.0 010 $a3-540-38326-3 024 7 $a10.1007/BFb0089021 035 $a(CKB)1000000000437979 035 $a(SSID)ssj0000322423 035 $a(PQKBManifestationID)12106187 035 $a(PQKBTitleCode)TC0000322423 035 $a(PQKBWorkID)10283680 035 $a(PQKB)11528342 035 $a(DE-He213)978-3-540-38326-0 035 $a(MiAaPQ)EBC5585610 035 $a(Au-PeEL)EBL5585610 035 $a(OCoLC)1066199857 035 $a(MiAaPQ)EBC6841961 035 $a(Au-PeEL)EBL6841961 035 $a(PPN)155196340 035 $a(EXLCZ)991000000000437979 100 $a20220909d1980 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aCyclic neofields and combinatorial designs /$fD. F. Hsu 205 $a1st ed. 1980. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1980] 210 4$dİ1980 215 $a1 online resource (VIII, 236 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v824 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-10243-4 327 $aAdditive structure in cyclic neofields -- Type a) XIP-neofields -- Construction of type b) XIP-neofields -- Construction of proper LXP- and proper XMP-neofields -- Cyclic neofields and combinatorial designs -- Cyclic neofields and permutation matrices. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v824 606 $aCombinatorial designs and configurations 606 $aCyclotomy 615 0$aCombinatorial designs and configurations. 615 0$aCyclotomy. 676 $a512.72 700 $aHsu$b D. Frank$g(Derbiau Frank),$f1948-$058933 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466584303316 996 $aCyclic neofields and combinatorial designs$981045 997 $aUNISA LEADER 02393nam 2200505 450 001 9910828118303321 005 20170816143333.0 010 $a1-4704-0018-9 035 $a(CKB)3360000000464310 035 $a(EBL)3113633 035 $a(SSID)ssj0000973354 035 $a(PQKBManifestationID)11582522 035 $a(PQKBTitleCode)TC0000973354 035 $a(PQKBWorkID)10959867 035 $a(PQKB)11766535 035 $a(MiAaPQ)EBC3113633 035 $a(RPAM)0000000702 035 $a(PPN)19540954X 035 $a(EXLCZ)993360000000464310 100 $a20750530d1967 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aModules over commutative regular rings /$fby R.S. Pierce 210 1$aProvidence :$cAmerican Mathematical Society,$d1967. 215 $a1 online resource (116 p.) 225 1 $aMemoirs of the American Mathematical Society ;$vnumber 70 300 $aCover title. 311 $a0-8218-1270-X 320 $aBibliography: pages 111-112. 327 $a""Contents""; ""Part I. The Representation Theory""; ""1. Subdirect representations of modules""; ""2. The decomposition space of a ring""; ""3. Sheaves""; ""4. Reduced ringed spaces""; ""5. The isomorphism theorem""; ""6. Functorial properties of ringed spaces""; ""7. Functorial properties of sheaves of modules""; ""8. The adjoint functor theorem""; ""9. Change of ring""; ""10. Regular ringed spaces""; ""11. Biregular rings""; ""12. m-Rings""; ""Part II. Modules Over Commutative Regular Rings""; ""13. The dimension function""; ""14. Cyclic modules""; ""15. Projective modules"" 327 $a""16. The Grothendieck group""""17. Direct sums of cyclic sheaves""; ""18. The refinement theorem""; ""19. Torsion and torsion-free modules""; ""20. Decomposition of torsion free modules""; ""21. The decomposition problem""; ""22. The torsion subsheaf""; ""23. Injective modules""; ""24. Self-infective rings""; ""25. Questions and conjectures"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 70. 606 $aCommutative rings 615 0$aCommutative rings. 700 $aPierce$b Richard S.$049830 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910828118303321 996 $aModules over commutative regular rings$9925659 997 $aUNINA