LEADER 02361nam 2200625 450 001 996466581003316 005 20220908080015.0 010 $a3-540-38176-7 024 7 $a10.1007/BFb0091051 035 $a(CKB)1000000000437990 035 $a(SSID)ssj0000327334 035 $a(PQKBManifestationID)12083603 035 $a(PQKBTitleCode)TC0000327334 035 $a(PQKBWorkID)10301434 035 $a(PQKB)11090595 035 $a(DE-He213)978-3-540-38176-1 035 $a(MiAaPQ)EBC5591785 035 $a(Au-PeEL)EBL5591785 035 $a(OCoLC)1066200259 035 $a(MiAaPQ)EBC6842324 035 $a(Au-PeEL)EBL6842324 035 $a(OCoLC)793078629 035 $a(PPN)155225456 035 $a(EXLCZ)991000000000437990 100 $a20220908d1980 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aToroidal compactification of Siegel spaces /$fYukihiko Namikawa 205 $a1st ed. 1980. 210 1$aBerlin ;$aHeidelberg :$cSpringer-Verlag,$d[1980] 210 4$dİ1980 215 $a1 online resource (X, 166 p.) 225 1 $aLecture Notes in Mathematics ;$vVolume 812 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-10021-0 327 $aThe siegel upperhalf plane and the symplectic group -- Main problem and main results -- The case of g=1 -- Boundary components and the structure of parabolic subgroups -- Realization as a siegel domain of the third kind, and satake compactification -- Theory of torus embeddings -- Toroidal compactification due to Mumford -- Examples : reduction theory of positive quadratic forms -- An application of the Voronoi compactification to the theory of moduli of polarized abelian varieties. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$vVolume 812. 606 $aCompact spaces 606 $aHermitian symmetric spaces 606 $aLinear algebraic groups 615 0$aCompact spaces. 615 0$aHermitian symmetric spaces. 615 0$aLinear algebraic groups. 676 $a514.32 700 $aNamikawa$b Yukihiko$f1945-$056082 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466581003316 996 $aToroidal compactification of Siegel spaces$9341314 997 $aUNISA