LEADER 03283nam 2200649 450 001 996466578203316 005 20220907133348.0 010 $a3-540-46876-5 024 7 $a10.1007/BFb0085723 035 $a(CKB)1000000000437048 035 $a(SSID)ssj0000321885 035 $a(PQKBManifestationID)12069528 035 $a(PQKBTitleCode)TC0000321885 035 $a(PQKBWorkID)10280094 035 $a(PQKB)11286054 035 $a(DE-He213)978-3-540-46876-9 035 $a(MiAaPQ)EBC5595301 035 $a(Au-PeEL)EBL5595301 035 $a(OCoLC)1076259205 035 $a(MiAaPQ)EBC6842099 035 $a(Au-PeEL)EBL6842099 035 $a(OCoLC)793079232 035 $a(PPN)155184938 035 $a(EXLCZ)991000000000437048 100 $a20220907d1990 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 00$aCohomology of arithmetic groups and automorphic forms $eproceedings of a conference held in Luminy/Marseille, France, May 22-27, 1989 /$fJ.-P. Labesse, Joachim Schwermer, editors 205 $a1st ed. 1990. 210 1$aBerlin :$cSpringer-Verlag,$d[1990] 210 4$d©1990 215 $a1 online resource (VI, 362 p.) 225 1 $aLecture notes in mathematics (Springer-Verlag) ;$v1447 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-53422-9 327 $aCohomology of arithmetic groups, automorphic forms and L-functions -- Limit multiplicities in L 2(??G) -- Generalized modular symbols -- On Yoshida's theta lift -- Some results on the Eisenstein cohomology of arithmetic subgroups of GL n -- Period invariants of Hilbert modular forms, I: Trilinear differential operators and L-functions -- An effective finiteness theorem for ball lattices -- Unitary representations with nonzero multiplicities in L2(??G) -- Signature des variétés modulaires de Hilbert et representations diédrales -- The Riemann-Hodge period relation for Hilbert modular forms of weight 2 -- Modular symbols and the Steinberg representation -- Lefschetz numbers for arithmetic groups -- Boundary contributions to Lefschetz numbers for arithmetic groups I -- Embedding of Flensted-Jensen modules in L 2(??G) in the noncompact case. 330 $aCohomology of arithmetic groups serves as a tool in studying possible relations between the theory of automorphic forms and the arithmetic of algebraic varieties resp. the geometry of locally symmetric spaces. These proceedings will serve as a guide to this still rapidly developing area of mathematics. Besides two survey articles, the contributions are original research papers. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1447. 606 $aArithmetical algebraic geometry 606 $aAutomorphic forms 606 $aLie groups$vCongresses 615 0$aArithmetical algebraic geometry. 615 0$aAutomorphic forms. 615 0$aLie groups 676 $a516.35 702 $aLabesse$b J.-P$g(Jean-Pierre),$f1943- 702 $aSchwermer$b Joachim 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466578203316 996 $aCohomology of arithmetic groups and automorphic forms$980128 997 $aUNISA LEADER 00864cam a2200241 i 4500 001 991002775389707536 008 070904s2003 be 00 fre 020 $a2804017435 035 $ab13578534-39ule_inst 040 $aBiblioteca Interfacoltà$bita 082 04$a843.91 100 1 $aBaronian, Jean-Baptiste$0193210 245 10$aMiroirs obscurs :$btreize contes fantastiques /$cJean-Baptiste Baronian 260 $aBruxelles :$bLabor,$c2003 300 $a109 p. :$britr. ;$c18 cm 440 0$aEspace nord junior ;$v43 650 4$aNarrativa francese 907 $a.b13578534$b02-04-14$c04-09-07 912 $a991002775389707536 945 $aLE002 843.912 BAR$g1$i2002000843951$lle002$oe$pE9.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i15412040$z21-05-12 996 $aMiroirs obscurs$91219659 997 $aUNISALENTO 998 $ale002$b04-09-07$cm$da $e-$ffre$gbe $h0$i0