LEADER 11231nam 2200613 450 001 996466567503316 005 20230421110807.0 010 $a3-030-71127-7 035 $a(CKB)4100000011807068 035 $a(MiAaPQ)EBC6531799 035 $a(Au-PeEL)EBL6531799 035 $a(OCoLC)1245857973 035 $a(PPN)254719724 035 $a(EXLCZ)994100000011807068 100 $a20211019d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBoundary integral equations /$fGeorge C. Hsiao, Wolfgang L. Wendland 205 $aSecond edition. 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$d©2021 215 $a1 online resource (xx, 783 pages) $cillustrations 225 1 $aApplied mathematical sciences ;$vVolume 164 311 $a3-030-71126-9 320 $aIncludes bibliographical references and index. 327 $aIntro -- Preface to the Second Edition -- Preface to the First Edition -- Acknowledgements -- Table of Contents -- 1. Introduction -- 1.1 The Green Representation Formula -- 1.2 Boundary Potentials and Caldero?n's Projector -- 1.3 Boundary Integral Equations -- 1.3.1 The Dirichlet Problem -- 1.3.2 The Neumann Problem -- 1.4 Exterior Problems -- 1.4.1 The Exterior Dirichlet Problem -- 1.4.2 The Exterior Neumann Problem -- 1.5 Remarks -- 2. Boundary Integral Equations -- 2.1 The Helmholtz Equation -- 2.1.1 Low Frequency Behaviour -- 2.2 The Lame? System -- 2.2.1 The Interior Displacement Problem -- 2.2.2 The Interior Traction Problem -- 2.2.3 Some Exterior Fundamental Problems -- 2.2.4 The Incompressible Material -- 2.3 The Stokes Equations -- 2.3.1 Hydrodynamic Potentials -- 2.3.2 The Stokes Boundary Value Problems -- 2.3.3 The Incompressible Material - Revisited -- 2.4 The Biharmonic Equation -- 2.4.1 Caldero?n's Projector -- 2.4.2 Boundary Value Problems and Boundary Integral Equations -- 2.5 Remarks -- 3. Representation Formulae, Local Coordinates and Direct Boundary Integral Equations -- 3.1 Classical Function Spaces and Distributions -- 3.2 Hadamard's Finite Part Integrals -- 3.3 Local Coordinates -- 3.4 Short Excursion to Elementary Differential Geometry -- 3.4.1 Second Order Differential Operators in Divergence Form -- 3.5 Distributional Derivatives and Abstract Green's Second Formula -- 3.6 The Green Representation Formula -- 3.7 Green's Representation Formulae in Local Coordinates -- 3.8 Multilayer Potentials -- 3.9 Direct Boundary Integral Equations -- 3.9.1 Boundary Value Problems -- 3.9.2 Transmission Problems -- 3.10 Remarks -- 4. Sobolev Spaces -- 4.1 The Spaces Hs(?) -- 4.2 The Trace Spaces Hs(?) -- 4.2.1 Trace Spaces for Periodic Functions on a Smooth Curve in IR -- 4.2.2 Trace Spaces on Curved Polygons in IR. 327 $a4.3 The Trace Spaces on an Open Surface -- 4.4 The Weighted Sobolev Spaces Hm(?c -- ?) and Hm(IRn -- ?) -- 4.5 Function Spaces H( div ,?) and H( curl,?) -- 5. Variational Formulations -- 5.1 Partial Differential Equations of Second Order -- 5.1.1 Interior Problems -- 5.1.2 Exterior Problems -- 5.1.3 Transmission Problems -- 5.2 Abstract Existence Theorems for Variational Problems -- 5.2.1 The Lax-Milgram Theorem -- 5.3 The Fredholm-Nikolski Theorems -- 5.3.1 Fredholm's Alternative -- 5.3.2 The Riesz-Schauder and the Nikolski Theorems -- 5.3.3 Fredholm's Alternative for Sesquilinear Forms -- 5.3.4 Fredholm Operators -- 5.4 Ga?rding's Inequality for Boundary Value Problems -- 5.4.1 Ga?rding's Inequality for Second Order Strongly Elliptic Equations in ? -- 5.4.2 The Stokes System -- 5.4.3 Ga?rding's Inequality for Exterior Second Order Problems -- 5.4.4 Ga?rding's Inequality for Second Order Transmission Problems -- 5.5 Existence of Solutions to Strongly Elliptic Boundary Value Problems -- 5.5.1 Interior Boundary Value Problems -- 5.5.2 Exterior Boundary Value Problems -- 5.5.3 Transmission Problems -- 5.6 Solutions of Certain Boundary Integral Equations and Associated Boundary Value Problems -- 5.6.1 The Generalized Representation Formula for Second Order Systems -- 5.6.2 Continuity of Some Boundary Integral Operators -- 5.6.3 Continuity Based on Finite Regions -- 5.6.4 Continuity of Hydrodynamic Potentials -- 5.6.5 The Equivalence Between Boundary Value Problems and Integral Equations -- 5.6.6 Variational Formulation of Direct Boundary Integral Equations -- 5.6.7 Positivity and Contraction of Boundary Integral Operators -- 5.6.8 The Solvability of Direct Boundary Integral Equations -- 5.6.9 Positivity of the Boundary Integral Operators of the Stokes System -- 5.7 Partial Differential Equations of Higher Order -- 5.8 Remarks -- 5.8.1 Assumptions on ?. 327 $a5.8.2 Higher Regularity of Solutions -- 5.8.3 Mixed Boundary Conditions and Crack Problem -- 6. Electromagnetic Fields -- 6.1 Introduction -- 6.2 Maxwell Equations -- 6.3 Constitutive Equations -- 6.4 Time Harmonic Fields -- 6.4.1 Plane waves -- 6.5 Electromagnetic potentials -- 6.6 Transmission and Boundary Conditions -- 6.7 Boundary Value Problems -- 6.7.1 Scattering problems -- 6.7.2 Eddy current problems -- 6.8 Uniqueness -- 6.8.1 The cavity problem -- 6.8.2 Exterior problems -- 6.8.3 The transmission problem -- 6.9 Representation Formulae -- 6.10 Boundary Integral Equations for Electromagnetic fields -- 6.10.1 The Calderon projector and the capacity operators -- 6.10.2 Weak solutions for a fundamental problem -- 6.10.2.1 Interior Dirichlet problem in ?. -- 6.10.2.2 A reduction to boundary integral equations. -- 6.11 Application of the Electromagnetic Potentials to Eddy Current Problems -- 6.11.1 The '(A, ?) ? (A) ? (?)' formulation in the bounded domain -- 6.11.2 The '(A, ?) ? (?)' formulation in an unbounded domain -- 6.11.3 Electric field in the dielectric domain ?D. -- 6.11.4 Vector potentials - revisited -- 6.12 Applications of boundary integral equations to scattering problems -- 6.12.1 Scattering by a perfect electric conductor, EFIE and MFIE -- 6.12.2 Scattering by a dielectric body -- 6.12.3 Scattering by objects with impedance boundary conditions -- 7. Introduction to Pseudodifferential Operators -- 7.1 Basic Theory of Pseudodifferential Operators -- 7.2 Elliptic Pseudodifferential Operators on ? ? IRn -- 7.2.1 Systems of Pseudodifferential Operators -- 7.2.2 Parametrix and Fundamental Solution -- 7.2.3 Levi Functions for Scalar Elliptic Equations -- 7.2.4 Levi Functions for Elliptic Systems -- 7.2.5 Strong Ellipticity and Ga?rding's Inequality -- 7.3 Review on Fundamental Solutions -- 7.3.1 Local Fundamental Solutions. 327 $a7.3.2 Fundamental Solutions in IRn for Operators with Constant Coefficients -- 7.3.3 Existing Fundamental Solutions in Applications -- 8. Pseudodifferential Operators as Integral Operators -- 8.1 Pseudohomogeneous Kernels -- 8.1.1 Integral Operators as Pseudodifferential Operators of Negative Order -- 8.1.2 Non-Negative Order Pseudodifferential Operators as Hadamard Finite Part Integral Operators -- 8.1.3 Parity Conditions -- 8.1.4 A Summary of the Relations between Kernels and Symbols -- 8.2 Coordinate Changes and Pseudohomogeneous Kernels -- 8.2.1 The Transformation of General Hadamard Finite Part Integral Operators under Change of Coordinates -- 8.2.2 The Class of Invariant Hadamard Finite Part Integral Operators under Change of Coordinates -- 9. Pseudodifferential and Boundary Integral Operators -- 9.1 Pseudodifferential Operators on Boundary Manifolds -- 9.1.1 Ellipticity on Boundary Manifolds -- 9.1.2 Schwartz Kernels on Boundary Manifolds -- 9.2 Boundary Operators Generated by Domain Pseudodifferential Operators -- 9.3 Surface Potentials on the Plane IRn?1 -- 9.4 Pseudodifferential Operators with Symbols of Rational Type -- 9.5 Surface Potentials on the Boundary Manifold ? -- 9.6 Volume Potentials -- 9.7 Strong Ellipticity and Fredholm Properties -- 9.8 Strong Ellipticity of Boundary Value Problems and Associated Boundary Integral Equations -- 9.8.1 The Boundary Value and Transmission Problems -- 9.8.2 The Associated Boundary Integral Equations of the First Kind -- 9.8.3 The Transmission Problem and Ga?rding's inequality -- 9.9 Remarks -- 10. Integral Equations on ? ? IR3 Recast as Pseudodifferential Equations -- 10.1 Newton Potential Operators for Elliptic Partial Differential Equations and Systems -- 10.1.1 Generalized Newton Potentials for the Helmholtz Equation -- 10.1.2 The Newton Potential for the Lame? System. 327 $a10.1.3 The Newton Potential for the Stokes System -- 10.2 Surface Potentials for Second Order Equations -- 10.2.1 Strongly Elliptic Differential Equations -- 10.2.2 Surface Potentials for the Helmholtz Equation -- 10.2.3 Surface Potentials for the Lame? System -- 10.2.4 Surface Potentials for the Stokes System -- 10.3 Invariance of Boundary Pseudodifferential Operators -- 10.3.1 The Hypersingular Boundary Integral Operators for the Helmholtz Equation -- 10.3.2 The Hypersingular Operator for the Lame? System -- 10.3.3 The Hypersingular Operator for the Stokes System -- 10.4 Derivatives of Boundary Potentials -- 10.4.1 Derivatives of the Solution to the Helmholtz Equation -- 10.4.2 Computation of Stress and Strain on the Boundary for the Lame? System -- 10.5 Remarks -- 11. Boundary Integral Equations on Curves in IR2 -- 11.1 Representation of the basic operators for the 2D-Laplacian in terms of Fourier series -- 11.2 The Fourier Series Representation of Periodic Operators A ? L m cl(?) -- 11.3 Ellipticity Conditions for Periodic Operators on ? -- 11.3.1 Scalar Equations -- 11.3.2 Systems of Equations -- 11.3.3 Multiply Connected Domains -- 11.4 Fourier Series Representation of some Particular Operators -- 11.4.1 The Helmholtz Equation -- 11.4.2 The Lame? System -- 11.4.3 The Stokes System -- 11.4.4 The Biharmonic Equation -- 11.5 Remarks -- 12. Remarks on Pseudodifferential Operators Related to the Time Harmonic Maxwell Equations -- 12.1 Introduction -- 12.2 Symbols of P and the corresponding Newton potentials -- 12.3 Representation formulae -- 12.4 Symbols of the Electromagnetic Boundary Potentials -- 12.5 Symbols of boundary integral operators -- 12.6 Symbols of the Capacity Operators -- 12.7 Boundary Integral Operators for the Fundamental Boundary Value Problems -- 12.8 Coerciveness and Strong Ellipticity. 327 $a12.9 Ga?rding's inequality for the sesquilinear form A in (6.12.23). 410 0$aApplied mathematical sciences (Springer-Verlag New York Inc.) ;$vvolume 164. 606 $aBoundary element methods 606 $aIntegral equations 606 $aProblemes de contorn$2thub 606 $aEquacions integrals$2thub 608 $aLlibres electrònics$2thub 615 0$aBoundary element methods. 615 0$aIntegral equations. 615 7$aProblemes de contorn 615 7$aEquacions integrals 676 $a620.00151535 700 $aHsiao$b G. C$g(George C.),$0313294 702 $aWendland$b W. L$g(Wolfgang L.),$f1936- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466567503316 996 $aBoundary integral equations$92597295 997 $aUNISA