LEADER 02017nam 2200625 450 001 996466539803316 005 20220911151612.0 010 $a3-540-38768-4 024 7 $a10.1007/BFb0071461 035 $a(CKB)1000000000437754 035 $a(SSID)ssj0000323248 035 $a(PQKBManifestationID)12042123 035 $a(PQKBTitleCode)TC0000323248 035 $a(PQKBWorkID)10299235 035 $a(PQKB)11309759 035 $a(DE-He213)978-3-540-38768-8 035 $a(MiAaPQ)EBC5585007 035 $a(Au-PeEL)EBL5585007 035 $a(OCoLC)1066182075 035 $a(MiAaPQ)EBC6842183 035 $a(Au-PeEL)EBL6842183 035 $a(PPN)155232789 035 $a(EXLCZ)991000000000437754 100 $a20220911d1984 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aFormally P-Adic fields /$fAlexander Prestel and Peter Raquette 205 $a1st ed. 1984. 210 1$aBerlin, Germany :$cSpringer-Verlag,$d[1984] 210 4$dİ1984 215 $a1 online resource (VIII, 168 p.) 225 1 $aLecture Notes in Mathematics ;$v1050 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-12890-5 327 $aand motivation -- p-valuations -- p-adically closed fields -- The general embedding theorem -- Model theory of p-adically closed fields -- Formally p-adic fields -- Function fields over p-adically closed fields. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1050. 606 $aValued fields 606 $ap-adic fields 606 $ap-adic numbers 615 0$aValued fields. 615 0$ap-adic fields. 615 0$ap-adic numbers. 676 $a512.74 700 $aPrestel$b A$g(Alexander),$f1941-$058277 702 $aRoquette$b Peter$f1927- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466539803316 996 $aFormally p-adic fields$9262545 997 $aUNISA