LEADER 03174nam 2200613 450 001 996466539203316 005 20220907173249.0 010 $a3-540-38857-5 024 7 $a10.1007/BFb0082413 035 $a(CKB)1000000000437500 035 $a(SSID)ssj0000326974 035 $a(PQKBManifestationID)12061297 035 $a(PQKBTitleCode)TC0000326974 035 $a(PQKBWorkID)10298190 035 $a(PQKB)10291613 035 $a(DE-He213)978-3-540-38857-9 035 $a(MiAaPQ)EBC5594889 035 $a(Au-PeEL)EBL5594889 035 $a(OCoLC)1076231526 035 $a(MiAaPQ)EBC6842021 035 $a(Au-PeEL)EBL6842021 035 $a(OCoLC)793079052 035 $a(PPN)155179624 035 $a(EXLCZ)991000000000437500 100 $a20220907d1988 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 00$aStrong asymptotics for extremal polynomials associated with weights on R /$fedited by Doron S. Lubinsky, Edward B. Saff 205 $a1st ed. 1988. 210 1$aBerlin, Germany :$cSpringer,$d[1988] 210 4$dİ1988 215 $a1 online resource (VIII, 156 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1305 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-387-18958-0 311 $a3-540-18958-0 327 $aNotation and index of notation -- Statement of main results -- Weighted polynomials and zeros of extremal polynomials -- Integral equations -- Polynomial approximation of potentials -- Infinite-finite range inequalities and their sharpness -- The largest zeros of extremal polynomials -- Further properties of Un, R(x) -- Nth root asymptotics for extremal polynomials -- Approximation by certain weighted polynomials, I -- Approximation by certain weighted polynomials, II -- Bernstein's formula and bernstein extremal polynomials -- Proof of the asymptotics for Enp(W) -- Proof of the asymptotics for the Lp extremal polynomials -- The case p=2 : Orthonormal polynomials. 330 $a0. The results are consequences of a strengthened form of the following assertion: Given 0