LEADER 02520nam 2200601 450 001 996466539103316 005 20220305000259.0 010 $a3-540-38793-5 024 7 $a10.1007/BFb0071790 035 $a(CKB)1000000000437750 035 $a(SSID)ssj0000323417 035 $a(PQKBManifestationID)12065009 035 $a(PQKBTitleCode)TC0000323417 035 $a(PQKBWorkID)10299466 035 $a(PQKB)10616028 035 $a(DE-He213)978-3-540-38793-0 035 $a(MiAaPQ)EBC5594829 035 $a(Au-PeEL)EBL5594829 035 $a(OCoLC)1076233478 035 $a(MiAaPQ)EBC6842707 035 $a(Au-PeEL)EBL6842707 035 $a(OCoLC)1294150295 035 $a(PPN)155221515 035 $a(EXLCZ)991000000000437750 100 $a20220305d1984 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aGalerkin finite element methods for parabolic problems /$fVidar Thome?e 205 $a1st ed. 1984. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1984] 210 4$dİ1984 215 $a1 online resource (VI, 238 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1054 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-12911-1 327 $aThe standard Galerkin method -- Semidiscrete methods based on more general approximations of the elliptic problem -- Smooth and non-smooth data error estimates for the homogeneous equation -- Parabolic equations with more general elliptic operators -- Maximum-Norm estimates -- Negative norm estimates and superconvergence -- Completely discrete schemes for the homogeneous equation -- Completely discrete schemes for the inhomogeneous equation -- Time discretization by the discontinuous Galerkin method -- A nonlinear problem -- The method of lumped masses -- The H1 and H?1 methods -- A mixed method -- A singular problem. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1054 606 $aDifferential equations, Parabolic$xNumerical solutions 606 $aFinite element method 615 0$aDifferential equations, Parabolic$xNumerical solutions. 615 0$aFinite element method. 676 $a515.3534 700 $aThome?e$b Vidar$f1933-$056425 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466539103316 996 $aGalerkin finite element methods for parabolic problems$9262536 997 $aUNISA