LEADER 02576nam 2200649 450 001 996466534203316 005 20220907201147.0 010 $a3-540-37436-1 024 7 $a10.1007/BFb0070263 035 $a(CKB)1000000000438537 035 $a(SSID)ssj0000327680 035 $a(PQKBManifestationID)12116684 035 $a(PQKBTitleCode)TC0000327680 035 $a(PQKBWorkID)10301687 035 $a(PQKB)10969134 035 $a(DE-He213)978-3-540-37436-7 035 $a(MiAaPQ)EBC5594764 035 $a(Au-PeEL)EBL5594764 035 $a(OCoLC)1076232938 035 $a(MiAaPQ)EBC6842121 035 $a(Au-PeEL)EBL6842121 035 $a(OCoLC)1292356123 035 $a(PPN)155213679 035 $a(EXLCZ)991000000000438537 100 $a20220907d1972 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aZeta functions of simple algebras /$fRoger Godement, Herve? Jacquet 205 $a1st ed. 1972. 210 1$aBerlin ;$aHeidelberg ;$aNew York :$cSpringer-Verlag,$d[1972] 210 4$dİ1972 215 $a1 online resource (XII, 196 p.) 225 1 $aLecture notes in mathematics (Springer-Verlag) ;$v260 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-05797-8 320 $aIncludes bibliographical references. 327 $aIntro -- Title Page -- Copyright Page -- Introduction -- Notations -- Table of Contents -- Chapter I: Local Theory -- 1. Convergence lemmas -- 2. Induced representations -- 3. Reduction to the absolutely cuspidal case -- 4. Division algebras (local theory) -- 5. Absolutely cuspidal representations -- 6. Example: spherical functions -- 7. Example: special representation -- 8. Archimedean Case -- 9. Unitary representations -- Chapter II: Global Theory -- 10. Automorphic forms -- 11. Convergence lemmas (Global Theory) -- 12. The zeta integral of a cusp form -- 13. The main theorem -- Bibliography. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v260. 606 $aAlgebraic number theory 606 $aFunctions, Zeta 606 $aRepresentations of groups 615 0$aAlgebraic number theory. 615 0$aFunctions, Zeta. 615 0$aRepresentations of groups. 676 $a512.74 700 $aGodement$b Roger$0441293 702 $aJacquet$b Herve?$f1939- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466534203316 996 $aZeta Functions of Simple Algebras$92830891 997 $aUNISA