LEADER 02580nam 2200577 450 001 996466530203316 005 20220909120322.0 010 $a3-540-38842-7 024 7 $a10.1007/BFb0082094 035 $a(CKB)1000000000437504 035 $a(SSID)ssj0000325601 035 $a(PQKBManifestationID)12072408 035 $a(PQKBTitleCode)TC0000325601 035 $a(PQKBWorkID)10325252 035 $a(PQKB)11226618 035 $a(DE-He213)978-3-540-38842-5 035 $a(MiAaPQ)EBC5595756 035 $a(Au-PeEL)EBL5595756 035 $a(OCoLC)1076233438 035 $a(MiAaPQ)EBC6842441 035 $a(Au-PeEL)EBL6842441 035 $a(PPN)155163876 035 $a(EXLCZ)991000000000437504 100 $a20220909d1988 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aPeriods of Hecke characters /$fNorbert Schappacher 205 $a1st ed. 1988. 210 1$aBerlin, Germany :$cSpringer,$d[1988] 210 4$dİ1988 215 $a1 online resource (XVIII, 162 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1301 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-18915-7 327 $aAlgebraic hecke characters -- Motives for algebraic hecke characters -- The periods of algebraic hecke characters -- Elliptic integrals and the gamma function -- Abelian integrals with complex multiplication -- Motives of CM modular forms. 330 $aThe starting point of this Lecture Notes volume is Deligne's theorem about absolute Hodge cycles on abelian varieties. Its applications to the theory of motives with complex multiplication are systematically reviewed. In particular, algebraic relations between values of the gamma function, the so-called formula of Chowla and Selberg and its generalization and Shimura's monomial relations among periods of CM abelian varieties are all presented in a unified way, namely as the analytic reflections of arithmetic identities beetween Hecke characters, with gamma values corresponding to Jacobi sums. The last chapter contains a special case in which Deligne's theorem does not apply. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1301 606 $aMultiplication, Complex 615 0$aMultiplication, Complex. 676 $a512.7 700 $aSchappacher$b Norbert$058449 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466530203316 996 $aPeriods of Hecke characters$978602 997 $aUNISA