LEADER 02648nam 2200613 450 001 996466528003316 005 20220910232158.0 010 $a1-280-62117-6 010 $a9786610621170 010 $a3-540-38940-7 024 7 $a10.1007/3-540-38940-7 035 $a(CKB)1000000000230360 035 $a(EBL)3036479 035 $a(SSID)ssj0000204711 035 $a(PQKBManifestationID)12031578 035 $a(PQKBTitleCode)TC0000204711 035 $a(PQKBWorkID)10192111 035 $a(PQKB)11012980 035 $a(DE-He213)978-3-540-38940-8 035 $a(MiAaPQ)EBC3036479 035 $a(MiAaPQ)EBC6842413 035 $a(Au-PeEL)EBL6842413 035 $a(OCoLC)74710229 035 $a(PPN)15516905X 035 $a(EXLCZ)991000000000230360 100 $a20220910d1984 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aModular representation theory $enew trends and methods /$fD. Benson 205 $a1st ed. 1984. 210 1$aBerlin, Germany :$cSpringer,$d[1984] 210 4$dİ1984 215 $a1 online resource (245 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1081 300 $a"AMS subject classification (1980): 20C20"--T.p. verso. 311 $a3-540-13389-5 320 $aIncludes bibliography and index. 327 $a""Introduction""; ""Table of Contents""; ""Conventions and Abbreviations""; ""References""; ""Index"" 330 $aThe aim of this 1983 Yale graduate course was to make some recent results in modular representation theory accessible to an audience ranging from second-year graduate students to established mathematicians. After a short review of background material, three closely connected topics in modular representation theory of finite groups are treated: representations rings, almost split sequences and the Auslander-Reiten quiver, complexity and cohomology varieties. The last of these has become a major theme in representation theory into the 21st century. Some of this material was incorporated into the author's 1991 two-volume Representations and Cohomology, but nevertheless Modular Representation Theory remains a useful introduction. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1081 606 $aModular representations of groups 615 0$aModular representations of groups. 676 $a512.2 700 $aBenson$b D. J$g(David J.),$f1955-$054407 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466528003316 996 $aModular representation theory$978522 997 $aUNISA