LEADER 04354nam 22007335 450 001 996466524803316 005 20210913160929.0 010 $a3-540-45392-X 024 7 $a10.1007/BFb0107201 035 $a(CKB)1000000000437269 035 $a(SSID)ssj0000323473 035 $a(PQKBManifestationID)12072460 035 $a(PQKBTitleCode)TC0000323473 035 $a(PQKBWorkID)10299432 035 $a(PQKB)11650921 035 $a(DE-He213)978-3-540-45392-5 035 $a(MiAaPQ)EBC5585520 035 $a(Au-PeEL)EBL5585520 035 $a(OCoLC)1066185240 035 $a(PPN)155237543 035 $a(EXLCZ)991000000000437269 100 $a20121227d2000 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aGeometric Aspects of Functional Analysis$b[electronic resource] $eIsrael Seminar 1996-2000 /$fedited by V.D. Milman, G. Schechtman 205 $a1st ed. 2000. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2000. 215 $a1 online resource (X, 298 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1745 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-41070-8 327 $aThe transportation cost for the cube -- The uniform concentration of measure phenomenon in ? p n (1 ? p ? 2) -- An editorial comment on the preceding paper -- A remark on the slicing problem -- Remarks on the growth of L p -norms of polynomials -- Positive lyapounov exponents for most energies -- Anderson localization for the band model -- Convex bodies with minimal mean width -- Euclidean projections of a p-convex body -- Remarks on minkowski symmetrizations -- Average volume of sections of star bodies -- Between sobolev and poincaré -- Random aspects of high-dimensional convex bodies -- A geometric lemma and duality of entropy numbers -- Stabilized asymptotic structures and envelopes in banach spaces -- On the isotropic constant of Non-symmetric convex bodies -- Concentration on the ? p n ball -- Shannon?s entropy power inequality via restricted minkowski sums -- Notes on an inequality by pisier for functions on the discrete cube -- More on embedding subspaces of L p into ? p N , 0 p < 1 -- Seminar talks. 330 $aThis volume of original research papers from the Israeli GAFA seminar during the years 1996-2000 not only reports on more traditional directions of Geometric Functional Analysis, but also reflects on some of the recent new trends in Banach Space Theory and related topics. These include the tighter connection with convexity and the resulting added emphasis on convex bodies that are not necessarily centrally symmetric, and the treatment of bodies which have only very weak convex-like structure. Another topic represented here is the use of new probabilistic tools; in particular transportation of measure methods and new inequalities emerging from Poincaré-like inequalities. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1745 606 $aFunctional analysis 606 $aConvex geometry  606 $aDiscrete geometry 606 $aProbabilities 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 606 $aConvex and Discrete Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21014 606 $aProbability Theory and Stochastic Processes$3https://scigraph.springernature.com/ontologies/product-market-codes/M27004 615 0$aFunctional analysis. 615 0$aConvex geometry . 615 0$aDiscrete geometry. 615 0$aProbabilities. 615 14$aFunctional Analysis. 615 24$aConvex and Discrete Geometry. 615 24$aProbability Theory and Stochastic Processes. 676 $a510 s 676 $a515/.732 686 $a46-06$2msc 702 $aMilman$b V.D$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aSchechtman$b G$4edt$4http://id.loc.gov/vocabulary/relators/edt 712 12$aIsrael Seminar on Geometrical Aspects of Functional Analysis$f(1996-2000) 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466524803316 996 $aGeometric aspects of functional analysis$980193 997 $aUNISA LEADER 02579nam 2200649 450 001 9910822176703321 005 20230807210922.0 010 $a1-5231-0454-6 010 $a3-11-039013-2 010 $a3-11-033346-5 024 7 $a10.1515/9783110333466 035 $a(CKB)3360000000515069 035 $a(EBL)1867324 035 $a(SSID)ssj0001458497 035 $a(PQKBManifestationID)11785330 035 $a(PQKBTitleCode)TC0001458497 035 $a(PQKBWorkID)11451865 035 $a(PQKB)10294482 035 $a(DE-B1597)213215 035 $a(OCoLC)908080239 035 $a(OCoLC)979583340 035 $a(DE-B1597)9783110333466 035 $a(MiAaPQ)EBC1867324 035 $a(Au-PeEL)EBL1867324 035 $a(CaPaEBR)ebr11049486 035 $a(CaONFJC)MIL783525 035 $a(EXLCZ)993360000000515069 100 $a20141010h20152015 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDistillation $ethe theory /$fby Alfons Vogelpohl 210 1$aBerlin ;$aBoston :$cWalter de Gruyter GmbH & Co., KG,$d[2015] 210 4$d©2015 215 $a1 online resource (122 p.) 225 1 $aDe Gruyter textbook 300 $aIncludes index. 311 $a3-11-029284-X 320 $aIncludes bibliographical references. 327 $tFrontmatter -- $tPreface -- $tContents -- $tIntroduction -- $t1. The principles and modes of distillation -- $t2. Assumptions and problem reduction -- $t3. The basic equations of distillation -- $t4. Distillation of ideal mixtures -- $t5. Distillation of real mixtures -- $t6. Computer programs -- $t7. Nomenclature -- $t8. Glossary -- $tA. Appendices -- $tIndex 330 $aDistillation based on Mass Transfer Processes, starting from the basic equation of ternary distillation published by Hausen in 1932 and exploiting the properties of this equation covering all modes of distillation. The material is intended as a graduate textbook for an advanced course on distillation but will also help the practicing engineer to better understand the complex interrelationships of multi-component distillation. 410 0$aDe Gruyter textbook. 606 $aDistillation 606 $aSeparation (Technology) 615 0$aDistillation. 615 0$aSeparation (Technology) 676 $a660/.28425 700 $aVogelpohl$b A$g(Alfons),$01219482 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910822176703321 996 $aDistillation$92819745 997 $aUNINA