LEADER 02825nam 22005655 450 001 996466523603316 005 20200704034536.0 010 $a3-540-87565-4 024 7 $a10.1007/978-3-540-87565-9 035 $a(CKB)1000000000546314 035 $a(SSID)ssj0000319286 035 $a(PQKBManifestationID)11277208 035 $a(PQKBTitleCode)TC0000319286 035 $a(PQKBWorkID)10336417 035 $a(PQKB)10587013 035 $a(DE-He213)978-3-540-87565-9 035 $a(MiAaPQ)EBC3063886 035 $a(PPN)132868407 035 $a(EXLCZ)991000000000546314 100 $a20100301d2009 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aOperator-Valued Measures and Integrals for Cone-Valued Functions$b[electronic resource] /$fby Walter Roth 205 $a1st ed. 2009. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2009. 215 $a1 online resource (X, 356 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1964 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-87564-6 320 $aIncludes bibliographical references (p. 345-352) and index. 327 $aLocally Convex Cones -- Measures and Integrals. The General Theory -- Measures on Locally Compact Spaces. 330 $aIntegration theory deals with extended real-valued, vector-valued, or operator-valued measures and functions. Different approaches are applied in each of these cases using different techniques. The order structure of the (extended) real number system is used for real-valued functions and measures, whereas suprema and infima are replaced with topological limits in the vector-valued case. A novel approach employing more general structures, locally convex cones, which are natural generalizations of locally convex vector spaces, is introduced here. This setting allows developing a general theory of integration which simultaneously deals with all of the above-mentioned cases. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1964 606 $aMeasure theory 606 $aFunctional analysis 606 $aMeasure and Integration$3https://scigraph.springernature.com/ontologies/product-market-codes/M12120 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 615 0$aMeasure theory. 615 0$aFunctional analysis. 615 14$aMeasure and Integration. 615 24$aFunctional Analysis. 676 $a515.42 700 $aRoth$b Walter$4aut$4http://id.loc.gov/vocabulary/relators/aut$0350426 906 $aBOOK 912 $a996466523603316 996 $aOperator-valued measures and integrals for cone-valued functions$9230313 997 $aUNISA