LEADER 04134nam 22008055 450 001 996466521703316 005 20210913160809.0 010 $a3-540-44442-4 024 7 $a10.1007/BFb0103751 035 $a(CKB)1000000000437265 035 $a(SSID)ssj0000327537 035 $a(PQKBManifestationID)12090982 035 $a(PQKBTitleCode)TC0000327537 035 $a(PQKBWorkID)10301363 035 $a(PQKB)11240453 035 $a(DE-He213)978-3-540-44442-8 035 $a(MiAaPQ)EBC6284040 035 $a(MiAaPQ)EBC5579047 035 $a(Au-PeEL)EBL5579047 035 $a(OCoLC)1066183511 035 $a(PPN)155177842 035 $a(EXLCZ)991000000000437265 100 $a20121227d2000 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aVariational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids$b[electronic resource] /$fby Martin Fuchs, Gregory Seregin 205 $a1st ed. 2000. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2000. 215 $a1 online resource (VIII, 276 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1749 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-41397-9 320 $aIncludes bibliographical references (pages [260]-267) and index. 327 $aWeak solutions to boundary value problems in the deformation theory of perfect elastoplasticity -- Differentiability properties of weak solutions to boundary value problems in the deformation theory of plasticity -- Quasi-static fluids of generalized Newtonian type -- Fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening law. 330 $aVariational methods are applied to prove the existence of weak solutions for boundary value problems from the deformation theory of plasticity as well as for the slow, steady state flow of generalized Newtonian fluids including the Bingham and Prandtl-Eyring model. For perfect plasticity the role of the stress tensor is emphasized by studying the dual variational problem in appropriate function spaces. The main results describe the analytic properties of weak solutions, e.g. differentiability of velocity fields and continuity of stresses. The monograph addresses researchers and graduate students interested in applications of variational and PDE methods in the mechanics of solids and fluids. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1749 606 $aApplied mathematics 606 $aEngineering mathematics 606 $aMechanics 606 $aMathematical physics 606 $aPartial differential equations 606 $aApplications of Mathematics$3https://scigraph.springernature.com/ontologies/product-market-codes/M13003 606 $aClassical Mechanics$3https://scigraph.springernature.com/ontologies/product-market-codes/P21018 606 $aTheoretical, Mathematical and Computational Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19005 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 615 0$aApplied mathematics. 615 0$aEngineering mathematics. 615 0$aMechanics. 615 0$aMathematical physics. 615 0$aPartial differential equations. 615 14$aApplications of Mathematics. 615 24$aClassical Mechanics. 615 24$aTheoretical, Mathematical and Computational Physics. 615 24$aPartial Differential Equations. 676 $a510 686 $a74C05$2msc 686 $a76A05$2msc 686 $a49N60$2msc 700 $aFuchs$b Martin$4aut$4http://id.loc.gov/vocabulary/relators/aut$065507 702 $aSeregin$b Gregory$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466521703316 996 $aVariational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids$92535430 997 $aUNISA