LEADER 00968nam0-2200313---450- 001 990008859400403321 005 20090527125953.0 010 $a0-7524-1950-1 035 $a000885940 035 $aFED01000885940 035 $a(Aleph)000885940FED01 035 $a000885940 100 $a20090527d2002----km-y0itay50------ba 101 0 $aeng$alat 102 $aGB 105 $aaefha---001yy 200 1 $aGarrison life at Vindolanda$ea band of brothers$fAnthony Birley 210 $aStroud$cTempus$d2002 215 $a192 p., [16] p. di tav.$cill. a col. e in b. e n.$d25 cm 610 0 $aGuarnigioni romane$aBritannia$aVindolanda$aDocumenti e reperti$aSec. 1.-4. 676 $a936.1 700 1$aBirley,$bAnthony Richard$0267280 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008859400403321 952 $aP2B-310-BIRLEY A.R.-2002$bBibl. 47147$fFLFBC 959 $aFLFBC 996 $aGarrison life at Vindolanda$9804345 997 $aUNINA LEADER 03806nam 22006975 450 001 996466521603316 005 20200704184059.0 010 $a3-642-15945-1 024 7 $a10.1007/978-3-642-15945-9 035 $a(CKB)2550000000020041 035 $a(SSID)ssj0000449040 035 $a(PQKBManifestationID)11300455 035 $a(PQKBTitleCode)TC0000449040 035 $a(PQKBWorkID)10393222 035 $a(PQKB)10835193 035 $a(DE-He213)978-3-642-15945-9 035 $a(MiAaPQ)EBC3066043 035 $a(PPN)149034393 035 $a(EXLCZ)992550000000020041 100 $a20101029d2010 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aArithmetic Geometry$b[electronic resource] $eLectures given at the C.I.M.E. Summer School held in Cetraro, Italy, September 10-15, 2007 /$fby Jean-Louis Colliot-Thélène, Peter Swinnerton-Dyer, Paul Vojta ; edited by Pietro Corvaja, Carlo Gasbarri 205 $a1st ed. 2010. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2010. 215 $a1 online resource (XI, 232 p.) 225 1 $aC.I.M.E. Foundation Subseries ;$v2009 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-15944-3 320 $aIncludes bibliographical references and index. 327 $aVariétés presque rationnelles, leurs points rationnels et leurs dégénérescences -- Topics in Diophantine Equations -- Diophantine Approximation and Nevanlinna Theory. 330 $aArithmetic Geometry can be defined as the part of Algebraic Geometry connected with the study of algebraic varieties over arbitrary rings, in particular over non-algebraically closed fields. It lies at the intersection between classical algebraic geometry and number theory. A C.I.M.E. Summer School devoted to arithmetic geometry was held in Cetraro, Italy in September 2007, and presented some of the most interesting new developments in arithmetic geometry. This book collects the lecture notes which were written up by the speakers. The main topics concern diophantine equations, local-global principles, diophantine approximation and its relations to Nevanlinna theory, and rationally connected varieties. The book is divided into three parts, corresponding to the courses given by J-L Colliot-Thélène Peter Swinnerton Dyer and Paul Vojta. 410 0$aC.I.M.E. Foundation Subseries ;$v2009 606 $aNumber theory 606 $aAlgebraic geometry 606 $aAlgebra 606 $aNumber Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M25001 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 606 $aAlgebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11000 608 $aConference papers and proceedings.$2fast 615 0$aNumber theory. 615 0$aAlgebraic geometry. 615 0$aAlgebra. 615 14$aNumber Theory. 615 24$aAlgebraic Geometry. 615 24$aAlgebra. 676 $a516.35 686 $a11G35$a11G25$a11D45$a14G05$a14G10$a14G40$a14M22$2msc 700 $aColliot-Thélène$b Jean-Louis$4aut$4http://id.loc.gov/vocabulary/relators/aut$0350594 702 $aSwinnerton-Dyer$b Peter$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aVojta$b Paul$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aCorvaja$b Pietro$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aGasbarri$b Carlo$4edt$4http://id.loc.gov/vocabulary/relators/edt 712 12$aC.I.M.E. Summer School$f(2007 :$eCetraro, Italy) 906 $aBOOK 912 $a996466521603316 996 $aArithmetic Geometry$92831933 997 $aUNISA