LEADER 03660nam 2200697 450 001 996466515603316 005 20220910153542.0 010 $a3-540-39235-1 024 7 $a10.1007/BFb0081732 035 $a(CKB)1000000000437488 035 $a(SSID)ssj0000323477 035 $a(PQKBManifestationID)12131542 035 $a(PQKBTitleCode)TC0000323477 035 $a(PQKBWorkID)10299612 035 $a(PQKB)10209789 035 $a(DE-He213)978-3-540-39235-4 035 $a(MiAaPQ)EBC5585577 035 $a(Au-PeEL)EBL5585577 035 $a(OCoLC)1066198880 035 $a(MiAaPQ)EBC6841923 035 $a(Au-PeEL)EBL6841923 035 $a(PPN)155191411 035 $a(EXLCZ)991000000000437488 100 $a20220910d1988 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 00$aGeometric aspects of functional analysis $eIsrael seminar (GAFA), 1986-87 /$fedited by Joram Lindenstrauss and Vitali D. Milman 205 $a1st ed. 1988. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1988] 210 4$dİ1988 215 $a1 online resource (X, 290 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1317 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-387-19353-7 311 $a3-540-19353-7 327 $aThe invariant subspace problem on a class of nonreflexive Banach spaces, 1 -- Approximational complexity of functions -- Minkowski sums and symmetrizations -- On two theorems of lozanovskii concerning intermediate Banach lattices -- On Milman's inequality and random subspaces which escape through a mesh in ? n -- Isomorphic symmetrization and geometric inequalities -- Dimension, non-linear spectra and width -- Some useful facts about Banach spaces -- Homogeneous Banach spaces -- An approach to pointwise ergodic theorems -- Some remarks on the geometry of convex sets -- On finite dimensional homogeneous Banach spaces -- Vector-valued hausdorff-young inequalities and applications -- Projection bodies -- On a geometric inequality -- A few observations on the connections between local theory and some other fields. 330 $aThis is the third published volume of the proceedings of the Israel Seminar on Geometric Aspects of Functional Analysis. The large majority of the papers in this volume are original research papers. There was last year a strong emphasis on classical finite-dimensional convexity theory and its connection with Banach space theory. In recent years, it has become evident that the notions and results of the local theory of Banach spaces are useful in solving classical questions in convexity theory. The present volume contributes to clarifying this point. In addition this volume contains basic contributions to ergodic theory, invariant subspace theory and qualitative differential geometry. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1317 606 $aFunctional analysis 606 $aBanach spaces 606 $aGeometry 615 0$aFunctional analysis. 615 0$aBanach spaces. 615 0$aGeometry. 676 $a515 686 $a46-06$2msc 686 $a52-06$2msc 686 $a58-06$2msc 702 $aLindenstrauss$b Joram$f1936-2012, 702 $aMilman$b Vitali D.$f1939- 712 12$aIsrael Seminar on Geometrical Aspects of Functional Analysis$f(1986-1987 :$eTel Aviv University) 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466515603316 996 $aGeometric aspects of functional analysis$980193 997 $aUNISA