LEADER 02339nam 2200613 450 001 996466513503316 005 20220304173814.0 010 $a3-540-36995-3 024 7 $a10.1007/BFb0058595 035 $a(CKB)1000000000438563 035 $a(SSID)ssj0000321273 035 $a(PQKBManifestationID)12083682 035 $a(PQKBTitleCode)TC0000321273 035 $a(PQKBWorkID)10281663 035 $a(PQKB)10888907 035 $a(DE-He213)978-3-540-36995-0 035 $a(MiAaPQ)EBC5595665 035 $a(Au-PeEL)EBL5595665 035 $a(OCoLC)1076253880 035 $a(MiAaPQ)EBC6842697 035 $a(Au-PeEL)EBL6842697 035 $a(OCoLC)1058011566 035 $a(PPN)155174088 035 $a(EXLCZ)991000000000438563 100 $a20220304d1971 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aAnalytic and algebraic dependence of meromorphic functions /$fAldo Andreotti, Wilhelm Stoll 205 $a1st ed. 1971. 210 1$aBerlin :$cSpringer,$d[1971] 210 4$dİ1971 215 $a1 online resource (VI, 394 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v234 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-05670-X 327 $aPreface -- German letters -- The rank of a holomorphic map -- Product representations -- Meromorphic functions -- Dependence -- Proper, light, holomorphic maps -- The field -- Semi-proper maps -- Quasi-proper maps -- as a finite algebraic extension of -- Quasi-proper maps of codimension k -- Full holomorphic maps -- Globalization -- The schwarz Lemma -- Sections in meromorphic line bundles -- Preparations -- Pseudoconcave maps -- A counter example by Kas. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v234 606 $aFunctions, Meromorphic 606 $aMathematical analysis$xData processing 615 0$aFunctions, Meromorphic. 615 0$aMathematical analysis$xData processing. 676 $a515.9 700 $aAndreotti$b Aldo$041868 702 $aStoll$b Wilhelm$f1923- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466513503316 996 $aAnalytic and algebraic dependence of meromorphic functions$92831262 997 $aUNISA