LEADER 02589nam 2200589 450 001 996466511303316 005 20220907104639.0 010 $a3-540-39057-X 024 7 $a10.1007/BFb0092224 035 $a(CKB)1000000000437886 035 $a(SSID)ssj0000321698 035 $a(PQKBManifestationID)12131820 035 $a(PQKBTitleCode)TC0000321698 035 $a(PQKBWorkID)10280363 035 $a(PQKB)11564745 035 $a(DE-He213)978-3-540-39057-2 035 $a(MiAaPQ)EBC5584887 035 $a(Au-PeEL)EBL5584887 035 $a(OCoLC)1066197758 035 $a(MiAaPQ)EBC6842003 035 $a(Au-PeEL)EBL6842003 035 $a(OCoLC)793078719 035 $a(PPN)155179845 035 $a(EXLCZ)991000000000437886 100 $a20220907d1982 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 00$aBrauer groups in ring theory and algebraic geometry $eproceedings, University of Antwerp, U.I.A., Belgium, August 17-28, 1981 /$fedited by F. van Oystaeyen, A. Verschoren 205 $a1st ed. 1982. 210 1$aBerlin, Germany :$cSpringer,$d[1982] 210 4$dİ1982 215 $a1 online resource (X, 300 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v917 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-11216-2 327 $aGeneric splitting fields -- Crossed products over graded local rings -- Brauer group and diophantine geometry: A cohomological approach -- Brauer groups and class groups for a Krull domain -- Some remarks on Brauer groups of Krull domains -- Generic algebras -- Splitting rings for azumaya quaternion algebras -- Sur les decompositions des algebres a division en produit tensoriel d'algebres cycliques -- Local structure of maximal orders on surfaces -- Left ideals in maximal orders -- Brauer-Severi varieties -- On the Brauer group of surfaces and subrings of k[x,y] -- The Brauer groups in complex geometry -- When is Br(X)=Br?(X)? -- Quaternionic modules over ?2 (?) -- The Brauer group of a quasi affine-scheme -- A check list on Brauer groups. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v917 606 $aGeometry, Algebraic 615 0$aGeometry, Algebraic. 676 $a512.2 702 $aVerschoren$b A.$f1954- 702 $aOystaeyen$b F. Van$f1947- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466511303316 996 $aBrauer groups in ring theory and algebraic geometry$980570 997 $aUNISA