LEADER 02576nam 2200589 450 001 996466509503316 005 20220909115907.0 010 $a3-540-39105-3 024 7 $a10.1007/BFb0078078 035 $a(CKB)1000000000437498 035 $a(SSID)ssj0000326115 035 $a(PQKBManifestationID)12097372 035 $a(PQKBTitleCode)TC0000326115 035 $a(PQKBWorkID)10265043 035 $a(PQKB)10513586 035 $a(DE-He213)978-3-540-39105-0 035 $a(MiAaPQ)EBC5585951 035 $a(Au-PeEL)EBL5585951 035 $a(OCoLC)1066198325 035 $a(MiAaPQ)EBC6842440 035 $a(Au-PeEL)EBL6842440 035 $a(PPN)15519495X 035 $a(EXLCZ)991000000000437498 100 $a20220909d1988 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 12$aA real variable method for the Cauchy transform and analytic capacity /$fTakafumi Murai 205 $a1st ed. 1988. 210 1$aBerlin, Germany :$cSpringer,$d[1988] 210 4$d©1988 215 $a1 online resource (X, 134 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1307 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-387-19091-0 311 $a3-540-19091-0 327 $aThe calderón commutator (8 proofs of its boundedness) -- A real variable method for the cauchy transform on graphs -- Analytic capacities of cranks. 330 $aThis research monograph studies the Cauchy transform on curves with the object of formulating a precise estimate of analytic capacity. The note is divided into three chapters. The first chapter is a review of the Calderón commutator. In the second chapter, a real variable method for the Cauchy transform is given using only the rising sun lemma. The final and principal chapter uses the method of the second chapter to compare analytic capacity with integral-geometric quantities. The prerequisites for reading this book are basic knowledge of singular integrals and function theory. It addresses specialists and graduate students in function theory and in fluid dynamics. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1307 606 $aAnalytic functions 615 0$aAnalytic functions. 676 $a515 700 $aMurai$b Takafumi$f1948-$057587 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466509503316 996 $aReal variable method for the Cauchy transform, and analytic capacity$978606 997 $aUNISA