LEADER 04421nam 22008055 450 001 996466504303316 005 20211206210930.0 010 $a3-540-45170-6 024 7 $a10.1007/BFb0105531 035 $a(CKB)1000000000437279 035 $a(SSID)ssj0000326436 035 $a(PQKBManifestationID)11248969 035 $a(PQKBTitleCode)TC0000326436 035 $a(PQKBWorkID)10296723 035 $a(PQKB)11326161 035 $a(DE-He213)978-3-540-45170-9 035 $a(MiAaPQ)EBC5590722 035 $a(PPN)155238035 035 $a(EXLCZ)991000000000437279 100 $a20121227d2000 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aScattering Theory: Some Old and New Problems$b[electronic resource] /$fby Dmitri R. Yafaev 205 $a1st ed. 2000. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2000. 215 $a1 online resource (XVI, 176 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1735 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-67587-6 320 $aIncludes bibliographical references (pages [155]-166) and index. 327 $aBasic concepts -- Short-range interactions. asymptotic completeness -- Short-range interactions. Miscellaneous -- Long-range interactions. The scheme of smooth perturbations -- The generalized fourier transform -- Long-range matrix potentials -- A stationary representation -- The short-range case -- The long-range case -- The relative scattering matrix -- Setting the scattering problem -- Resolvent equations for three-particle systems -- Asymptotic completeness. A sketch of proof -- The scattering matrix and eigenfunctions for multiparticle systems -- New channels of scattering -- The heisenberg model -- Infinite obstacle scattering. 330 $aScattering theory is, roughly speaking, perturbation theory of self-adjoint operators on the (absolutely) continuous spectrum. It has its origin in mathematical problems of quantum mechanics and is intimately related to the theory of partial differential equations. Some recently solved problems, such as asymptotic completeness for the Schrödinger operator with long-range and multiparticle potentials, as well as open problems, are discussed. Potentials for which asymptotic completeness is violated are also constructed. This corresponds to a new class of asymptotic solutions of the time-dependent Schrödinger equation. Special attention is paid to the properties of the scattering matrix, which is the main observable of the theory. The book is addressed to readers interested in a deeper study of the subject. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1735 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aFunctional analysis 606 $aIntegral equations 606 $aPartial differential equations 606 $aMathematical physics 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 606 $aIntegral Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12090 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aTheoretical, Mathematical and Computational Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19005 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aFunctional analysis. 615 0$aIntegral equations. 615 0$aPartial differential equations. 615 0$aMathematical physics. 615 14$aAnalysis. 615 24$aFunctional Analysis. 615 24$aIntegral Equations. 615 24$aPartial Differential Equations. 615 24$aTheoretical, Mathematical and Computational Physics. 676 $a510 686 $a35P25$2msc 686 $a81Uxx$2msc 686 $a47A40$2msc 700 $aYafaev$b Dmitri R$4aut$4http://id.loc.gov/vocabulary/relators/aut$062696 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466504303316 996 $aScattering theory$9262202 997 $aUNISA