LEADER 01238nam0-2200373li-450 001 990000242440203316 005 20180312154832.0 010 $a981-02-0717-4 035 $a0024244 035 $aUSA010024244 035 $a(ALEPH)000024244USA01 035 $a0024244 100 $a20001109d1991----km-y0itay0103----ba 101 0 $aeng 102 $aSG 200 1 $aAdvances in theoretical physics$eItalo - Soviet workshop, Vietri sul Mare, Salerno, Italy 23-28 October 1990$fedited by E. R. Caianiello 210 $aSingapore [etc.]$cWorld Scientific$dcopyr. 1991 215 $aVIII, 225 p.$cill.$d22 cm. 610 1 $acongressi$avietri sul mare$a1990 610 1 $afisica matematica$acongressi$a1990 676 $a53015$9Fisica matematica 702 1$aCAIANIELLO,$bEdoardo R. 801 $aSistema bibliotecario di Ateneo dell' Università di Salerno$gRICA 912 $a990000242440203316 951 $a530.15 ADV$b0013609 959 $aBK 969 $aSCI 979 $c19920313 979 $c20001110$lUSA01$h1715 979 $c20020403$lUSA01$h1632 979 $aPATRY$b90$c20040406$lUSA01$h1617 979 $aFIORELLA$b90$c20070213$lUSA01$h1450 996 $aAdvances in theoretical physics$91487424 997 $aUNISA LEADER 01522nam 2200409 450 001 9910511621203321 005 20200421110909.0 010 $a1-876604-44-1 035 $a(CKB)4100000010474331 035 $a(MiAaPQ)EBC6124304 035 $a(EXLCZ)994100000010474331 100 $a20200421d2012 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aAudit committees $ea guide to good practice /$fa joint publication from the Auditing and Assurance Standards Board, Australian Institute of Company Directors and the Institute of Internal Auditors-Australia 205 $aSecond edition. 210 1$a[Place of publication not identified] :$cAustralian Government Auditing and Assurances Standards Board :$cAustralian Institute of Company Directors :$cThe Institute of Internal Auditors Australia,$d[2012] 210 4$d©2012 215 $a1 online resource (vi, 89 pages) 311 $a1-876604-41-7 606 $aFinance, Public$zAustralia$xAuditing 608 $aElectronic books. 615 0$aFinance, Public$xAuditing. 676 $a354.9400723205 712 02$aAuditing and Assurance Standards Board, 712 02$aAustralian Institute of Company Directors, 712 02$aInstitute of Internal Auditors-Australia, 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910511621203321 996 $aAudit committees$92552588 997 $aUNINA LEADER 04084nam 22007695 450 001 996466502903316 005 20200705132903.0 010 $a1-280-39164-2 010 $a9786613569561 010 $a3-642-11175-0 024 7 $a10.1007/978-3-642-11175-4 035 $a(CKB)2670000000007035 035 $a(SSID)ssj0000449727 035 $a(PQKBManifestationID)11924047 035 $a(PQKBTitleCode)TC0000449727 035 $a(PQKBWorkID)10449657 035 $a(PQKB)10334841 035 $a(DE-He213)978-3-642-11175-4 035 $a(MiAaPQ)EBC3065023 035 $a(PPN)14907865X 035 $a(EXLCZ)992670000000007035 100 $a20100301d2010 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to Complex Reflection Groups and Their Braid Groups$b[electronic resource] /$fby Michel Broué 205 $a1st ed. 2010. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2010. 215 $a1 online resource (XII, 144 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1988 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-11174-2 311 $a3-642-11184-X 320 $aIncludes bibliographical references and index. 327 $aPreliminaries -- Prerequisites and Complements in Commutative Algebra -- Polynomial Invariants of Finite Linear Groups -- Finite Reflection Groups in Characteristic Zero -- Eigenspaces and Regular Elements. 330 $aWeyl groups are particular cases of complex reflection groups, i.e. finite subgroups of GLr(C) generated by (pseudo)reflections. These are groups whose polynomial ring of invariants is a polynomial algebra. It has recently been discovered that complex reflection groups play a key role in the theory of finite reductive groups, giving rise as they do to braid groups and generalized Hecke algebras which govern the representation theory of finite reductive groups. It is now also broadly agreed upon that many of the known properties of Weyl groups can be generalized to complex reflection groups. The purpose of this work is to present a fairly extensive treatment of many basic properties of complex reflection groups (characterization, Steinberg theorem, Gutkin-Opdam matrices, Solomon theorem and applications, etc.) including the basic findings of Springer theory on eigenspaces. In doing so, we also introduce basic definitions and properties of the associated braid groups, as well as a quick introduction to Bessis' lifting of Springer theory to braid groups. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1988 606 $aGroup theory 606 $aCommutative algebra 606 $aCommutative rings 606 $aAssociative rings 606 $aRings (Algebra) 606 $aAlgebraic topology 606 $aGroup Theory and Generalizations$3https://scigraph.springernature.com/ontologies/product-market-codes/M11078 606 $aCommutative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11043 606 $aAssociative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11027 606 $aAlgebraic Topology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28019 615 0$aGroup theory. 615 0$aCommutative algebra. 615 0$aCommutative rings. 615 0$aAssociative rings. 615 0$aRings (Algebra). 615 0$aAlgebraic topology. 615 14$aGroup Theory and Generalizations. 615 24$aCommutative Rings and Algebras. 615 24$aAssociative Rings and Algebras. 615 24$aAlgebraic Topology. 676 $a512.2 686 $aMAT 203f$2stub 686 $aSI 850$2rvk 700 $aBroué$b Michel$4aut$4http://id.loc.gov/vocabulary/relators/aut$0478936 906 $aBOOK 912 $a996466502903316 996 $aIntroduction to complex reflection groups and their braid groups$9261779 997 $aUNISA