LEADER 03125nam 22005775 450 001 996466500203316 005 20220204012058.0 010 $a3-540-47871-X 024 7 $a10.1007/BFb0077390 035 $a(CKB)1000000000437553 035 $a(SSID)ssj0000326242 035 $a(PQKBManifestationID)12082546 035 $a(PQKBTitleCode)TC0000326242 035 $a(PQKBWorkID)10265094 035 $a(PQKB)11369091 035 $a(DE-He213)978-3-540-47871-3 035 $a(MiAaPQ)EBC6842827 035 $a(Au-PeEL)EBL6842827 035 $a(OCoLC)1292352219 035 $a(PPN)155233815 035 $a(EXLCZ)991000000000437553 100 $a20100730d1987 u| 0 101 0 $afre 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aReprésentations de Weil et GL2 - Algèbres de division et GLn$b[electronic resource] $eVers les corps de classes galoisiens I, II /$fby Tetsuo Kaise 205 $a1st ed. 1987. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1987. 215 $a1 online resource (VIII, 204 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1252 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-17827-9 330 $aThis monograph represents the first two parts of the author's research on the generalization of class field theory for the noncommutative case. Part I concentrates on the construction of all the irreducible representations of a multiplicative group B* of a quaternion algebra B over a local field k with residue field of characteristic 2. These results are of considerable significance in the light of the connections found by Jacquet-Langlands between representations of GL2 (k) and B* and although they concern GL2 they also provide a model for GLn. Part II deals with n 2 unifying results previously obtained by Weil, Jacquet-Langlands, Bernstein-Zelevinskii, Deligne-Kazdan and others. More than a mere comparison of these results, it reveals an intrinsic correspondence found with the aid of the base restriction process of algebraic groups and the substitution of division of algebras for Cartan subalgebras. The approach is purely local and therefore may be applied also to other types of reductive groups, in particular Sp2l as well as to archimedean cases. This book will be of great interest to researchers and graduate students working in algebraic number theory and automorphic forms. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1252 606 $aNumber theory 606 $aNumber Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M25001 615 0$aNumber theory. 615 14$aNumber Theory. 676 $a512.7 686 $a12B27$2msc 686 $a22E50$2msc 700 $aKaise$b Tetsuo$4aut$4http://id.loc.gov/vocabulary/relators/aut$057721 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466500203316 996 $aRepresentations de Weil et GL2 algebres de division et GLn$9262361 997 $aUNISA