LEADER 03281nam 22006495 450 001 996466499303316 005 20200701203823.0 010 $a3-540-39902-X 024 7 $a10.1007/b95349 035 $a(CKB)1000000000230990 035 $a(SSID)ssj0000325204 035 $a(PQKBManifestationID)12118373 035 $a(PQKBTitleCode)TC0000325204 035 $a(PQKBWorkID)10321396 035 $a(PQKB)11769003 035 $a(DE-He213)978-3-540-39902-5 035 $a(MiAaPQ)EBC5592468 035 $a(PPN)155226762 035 $a(EXLCZ)991000000000230990 100 $a20121227d2004 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aNoncommutative Stationary Processes$b[electronic resource] /$fby Rolf Gohm 205 $a1st ed. 2004. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2004. 215 $a1 online resource (VIII, 172 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1839 300 $aOriginally presented as the author's habilitation (Greifswald) under the title: Elements of a spatial theory for noncommutative stationary processes with discrete time index. 311 $a3-540-20926-3 320 $aIncludes bibliographical references (pages [165]-168) and index. 327 $aPreface -- Introduction -- 1. Extensions and dilations -- 2. Markov processes -- 3. Adaptedness -- 4. Examples and applications -- A. Some facts about unital completely positive maps -- References -- Index. 330 $aQuantum probability and the theory of operator algebras are both concerned with the study of noncommutative dynamics. Focusing on stationary processes with discrete-time parameter, this book presents (without many prerequisites) some basic problems of interest to both fields, on topics including extensions and dilations of completely positive maps, Markov property and adaptedness, endomorphisms of operator algebras and the applications arising from the interplay of these themes. Much of the material is new, but many interesting questions are accessible even to the reader equipped only with basic knowledge of quantum probability and operator algebras. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1839 606 $aProbabilities 606 $aFunctional analysis 606 $aOperator theory 606 $aProbability Theory and Stochastic Processes$3https://scigraph.springernature.com/ontologies/product-market-codes/M27004 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 606 $aOperator Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M12139 615 0$aProbabilities. 615 0$aFunctional analysis. 615 0$aOperator theory. 615 14$aProbability Theory and Stochastic Processes. 615 24$aFunctional Analysis. 615 24$aOperator Theory. 676 $a519.232 700 $aGohm$b Rolf$4aut$4http://id.loc.gov/vocabulary/relators/aut$0282339 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466499303316 996 $aNoncommutative stationary processes$9262659 997 $aUNISA