LEADER 03259nam 2200673 450 001 996466499103316 005 20220821120409.0 010 $a1-280-62570-8 010 $a9786610625703 010 $a3-540-32416-X 024 7 $a10.1007/11415558 035 $a(CKB)1000000000232625 035 $a(DE-He213)978-3-540-32416-4 035 $a(SSID)ssj0000232540 035 $a(PQKBManifestationID)11191016 035 $a(PQKBTitleCode)TC0000232540 035 $a(PQKBWorkID)10214306 035 $a(PQKB)11569571 035 $a(MiAaPQ)EBC3036429 035 $a(MiAaPQ)EBC6819260 035 $a(Au-PeEL)EBL6819260 035 $a(OCoLC)1287136195 035 $a(PPN)123128145 035 $a(EXLCZ)991000000000232625 100 $a20220821d2006 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aRandom times and enlargements of filtrations in a Brownian setting /$fRoger Mansuy, Marc Yor 205 $a1st ed. 2006. 210 1$aBerlin ;$aNew York, NY :$cSpringer,$d[2006] 210 4$d©2006 215 $a1 online resource (XIII, 158 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1873 300 $aUniversity lectures. 311 $a3-540-29407-4 320 $aIncludes bibliographical references and index. 327 $aNotation and Convention -- Stopping and Non-stopping Times -- On the Martingales which Vanish on the Set of Brownian Zeroes -- Predictable and Chaotic Representation Properties for Some Remarkable Martingales Including the Azéma and the Dunkl Martingales -- Unveiling the Brownian Path (or history) as the Level Rises -- Weak and Strong Brownian Filtrations -- Sketches of Solutions for the Exercises. 330 $aIn November 2004, M. Yor and R. Mansuy jointly gave six lectures at Columbia University, New York. These notes follow the contents of that course, covering expansion of filtration formulae; BDG inequalities up to any random time; martingales that vanish on the zero set of Brownian motion; the Azéma-Emery martingales and chaos representation; the filtration of truncated Brownian motion; attempts to characterize the Brownian filtration. The book accordingly sets out to acquaint its readers with the theory and main examples of enlargements of filtrations, of either the initial or the progressive kind. It is accessible to researchers and graduate students working in stochastic calculus and excursion theory, and more broadly to mathematicians acquainted with the basics of Brownian motion. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1873 606 $aStochastic processes 606 $aFilters (Mathematics) 606 $aBrownian motion processes 615 0$aStochastic processes. 615 0$aFilters (Mathematics) 615 0$aBrownian motion processes. 676 $a519.2/3 700 $aMansuy$b Roger$0472494 702 $aYor$b Marc 712 02$aSpringerLink (Online service) 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466499103316 996 $aRandom times and enlargements of filtrations in a Brownian setting$9230570 997 $aUNISA