LEADER 04222nam 22008295 450 001 996466497003316 005 20200702171244.0 010 $a1-280-39176-6 010 $a9786613569684 010 $a3-642-12589-1 024 7 $a10.1007/978-3-642-12589-8 035 $a(CKB)2670000000028900 035 $a(SSID)ssj0000449722 035 $a(PQKBManifestationID)11316354 035 $a(PQKBTitleCode)TC0000449722 035 $a(PQKBWorkID)10434253 035 $a(PQKB)10885956 035 $a(DE-He213)978-3-642-12589-8 035 $a(MiAaPQ)EBC3065387 035 $a(PPN)149063113 035 $a(EXLCZ)992670000000028900 100 $a20100623d2010 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aIntersection Spaces, Spatial Homology Truncation, and String Theory$b[electronic resource] /$fby Markus Banagl 205 $a1st ed. 2010. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2010. 215 $a1 online resource (XVI, 224 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1997 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-12588-3 320 $aIncludes bibliographical references (p. 211-213) and index. 330 $aIntersection cohomology assigns groups which satisfy a generalized form of Poincaré duality over the rationals to a stratified singular space. The present monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rational homology satisfies generalized Poincaré duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest to homotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1997 606 $aAlgebraic geometry 606 $aGeometry 606 $aAlgebraic topology 606 $aTopology 606 $aManifolds (Mathematics) 606 $aComplex manifolds 606 $aQuantum field theory 606 $aString theory 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 606 $aGeometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21006 606 $aAlgebraic Topology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28019 606 $aTopology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28000 606 $aManifolds and Cell Complexes (incl. Diff.Topology)$3https://scigraph.springernature.com/ontologies/product-market-codes/M28027 606 $aQuantum Field Theories, String Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P19048 615 0$aAlgebraic geometry. 615 0$aGeometry. 615 0$aAlgebraic topology. 615 0$aTopology. 615 0$aManifolds (Mathematics). 615 0$aComplex manifolds. 615 0$aQuantum field theory. 615 0$aString theory. 615 14$aAlgebraic Geometry. 615 24$aGeometry. 615 24$aAlgebraic Topology. 615 24$aTopology. 615 24$aManifolds and Cell Complexes (incl. Diff.Topology). 615 24$aQuantum Field Theories, String Theory. 676 $a514.23 686 $a55N33$a57P10$a14J17$a81T30$a55P30$a55S36$a14J32$a14J33$2msc 700 $aBanagl$b Markus$4aut$4http://id.loc.gov/vocabulary/relators/aut$0478943 906 $aBOOK 912 $a996466497003316 996 $aIntersection spaces, spatial homology truncation, and string theory$9261785 997 $aUNISA