LEADER 03496nam 22007215 450 001 996466496103316 005 20200630102623.0 010 $a1-280-38432-8 010 $a9786613562241 010 $a3-642-01570-0 024 7 $a10.1007/978-3-642-01570-0 035 $a(CKB)1000000000746033 035 $a(SSID)ssj0000317229 035 $a(PQKBManifestationID)11923525 035 $a(PQKBTitleCode)TC0000317229 035 $a(PQKBWorkID)10287841 035 $a(PQKB)10675395 035 $a(DE-He213)978-3-642-01570-0 035 $a(MiAaPQ)EBC3064255 035 $a(PPN)136301002 035 $a(EXLCZ)991000000000746033 100 $a20100301d2009 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 14$aThe Dirac Spectrum$b[electronic resource] /$fby Nicolas Ginoux 205 $a1st ed. 2009. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2009. 215 $a1 online resource (XV, 156 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1976 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-01569-7 320 $aIncludes bibliographical references and index. 327 $aBasics of spin geometry -- Explicit computations of spectra -- Lower eigenvalue estimates on closed manifolds -- Lower eigenvalue estimates on compact manifolds with boundary -- Upper eigenvalue bounds on closed manifolds -- Prescription of eigenvalues on closed manifolds -- The Dirac spectrum on non-compact manifolds -- Other topics related with the Dirac spectrum. 330 $aThis volume surveys the spectral properties of the spin Dirac operator. After a brief introduction to spin geometry, we present the main known estimates for Dirac eigenvalues on compact manifolds with or without boundaries. We give examples where the spectrum can be made explicit and present a chapter dealing with the non-compact setting. The methods mostly involve elementary analytical techniques and are therefore accessible for Master students entering the subject. A complete and updated list of references is also included. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1976 606 $aGlobal analysis (Mathematics) 606 $aManifolds (Mathematics) 606 $aDifferential geometry 606 $aPartial differential equations 606 $aGlobal Analysis and Analysis on Manifolds$3https://scigraph.springernature.com/ontologies/product-market-codes/M12082 606 $aDifferential Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21022 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 615 0$aGlobal analysis (Mathematics). 615 0$aManifolds (Mathematics). 615 0$aDifferential geometry. 615 0$aPartial differential equations. 615 14$aGlobal Analysis and Analysis on Manifolds. 615 24$aDifferential Geometry. 615 24$aPartial Differential Equations. 676 $a530.143 686 $a35P15$a53C27$a58C40$a58J32$a58J50$2msc 686 $aMAT 358f$2stub 686 $aMAT 537f$2stub 686 $aMAT 580f$2stub 686 $aSI 850$2rvk 700 $aGinoux$b Nicolas$4aut$4http://id.loc.gov/vocabulary/relators/aut$0318786 906 $aBOOK 912 $a996466496103316 996 $aDirac spectrum$9230284 997 $aUNISA