LEADER 03867nam 22006855 450 001 996466492403316 005 20230821110817.0 010 $a3-642-16632-6 024 7 $a10.1007/978-3-642-16632-7 035 $a(CKB)2670000000065010 035 $a(SSID)ssj0000476703 035 $a(PQKBManifestationID)11284253 035 $a(PQKBTitleCode)TC0000476703 035 $a(PQKBWorkID)10479992 035 $a(PQKB)11272166 035 $a(DE-He213)978-3-642-16632-7 035 $a(MiAaPQ)EBC3066275 035 $a(PPN)149908148 035 $a(EXLCZ)992670000000065010 100 $a20110104d2011 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aSome Mathematical Models from Population Genetics$b[electronic resource] $eÉcole d'Été de Probabilités de Saint-Flour XXXIX-2009 /$fby Alison Etheridge 205 $a1st ed. 2011. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2011. 215 $a1 online resource (VIII, 119 p. 15 illus.) 225 1 $aÉcole d'Été de Probabilités de Saint-Flour,$x0721-5363 ;$v2012 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-16631-8 320 $aIncludes bibliographical references and index. 330 $aThis work reflects sixteen hours of lectures delivered by the author at the 2009 St Flour summer school in probability. It provides a rapid introduction to a range of mathematical models that have their origins in theoretical population genetics. The models fall into two classes: forwards in time models for the evolution of frequencies of different genetic types in a population; and backwards in time (coalescent) models that trace out the genealogical relationships between individuals in a sample from the population. Some, like the classical Wright-Fisher model, date right back to the origins of the subject. Others, like the multiple merger coalescents or the spatial Lambda-Fleming-Viot process are much more recent. All share a rich mathematical structure. Biological terms are explained, the models are carefully motivated and tools for their study are presented systematically. 410 0$aÉcole d'Été de Probabilités de Saint-Flour,$x0721-5363 ;$v2012 606 $aBiomathematics 606 $aMathematical models 606 $aPartial differential equations 606 $aStatistics  606 $aGenetics and Population Dynamics$3https://scigraph.springernature.com/ontologies/product-market-codes/M31010 606 $aMathematical and Computational Biology$3https://scigraph.springernature.com/ontologies/product-market-codes/M31000 606 $aMathematical Modeling and Industrial Mathematics$3https://scigraph.springernature.com/ontologies/product-market-codes/M14068 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aStatistics for Life Sciences, Medicine, Health Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/S17030 615 0$aBiomathematics. 615 0$aMathematical models. 615 0$aPartial differential equations. 615 0$aStatistics . 615 14$aGenetics and Population Dynamics. 615 24$aMathematical and Computational Biology. 615 24$aMathematical Modeling and Industrial Mathematics. 615 24$aPartial Differential Equations. 615 24$aStatistics for Life Sciences, Medicine, Health Sciences. 676 $a576.58015118 700 $aEtheridge$b Alison$4aut$4http://id.loc.gov/vocabulary/relators/aut$060921 712 12$aEcole d'e?te? de probabilite?s de Saint-Flour 906 $aBOOK 912 $a996466492403316 996 $aSome mathematical models from population genetics$9261771 997 $aUNISA