LEADER 02168nam 2200649 450 001 996466488303316 005 20220908152822.0 010 $a3-540-37439-6 024 7 $a10.1007/BFb0068398 035 $a(CKB)1000000000438184 035 $a(SSID)ssj0000323077 035 $a(PQKBManifestationID)12125900 035 $a(PQKBTitleCode)TC0000323077 035 $a(PQKBWorkID)10296822 035 $a(PQKB)10108522 035 $a(DE-He213)978-3-540-37439-8 035 $a(MiAaPQ)EBC5595609 035 $a(Au-PeEL)EBL5595609 035 $a(OCoLC)1076233228 035 $a(MiAaPQ)EBC6842254 035 $a(Au-PeEL)EBL6842254 035 $a(PPN)155236067 035 $a(EXLCZ)991000000000438184 100 $a20220908d1977 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aExtreme Eigen values of Toeplitz operators /$fI. I. Jr. Hirschman and D. E. Hughes 205 $a1st ed. 1977. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1977] 210 4$dİ1977 215 $a1 online resource (VIII, 148 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v618 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-07147-4 327 $aHilbert space background ? Small eigen values -- The fourier transform theorem -- The fourier series theorem -- Hilbert space theory ? Large eigen values -- The fourier series and fourier transform theorems. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v618 606 $aEigenvalues 606 $aAsymptotic expansions 606 $aFourier analysis 615 0$aEigenvalues. 615 0$aAsymptotic expansions. 615 0$aFourier analysis. 676 $a510 686 $a47B35$2msc 686 $a47A10$2msc 700 $aHirschman$b I. I$g(Isidore Isaac),$f1922-1990,$047750 702 $aHughes$b Daniel Edward$f1942- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466488303316 996 $aExtreme eigen values of Toeplitz operators$9979014 997 $aUNISA