LEADER 04246nam 22007335 450 001 996466487403316 005 20200701231338.0 010 $a1-280-39171-5 010 $a9786613569639 010 $a3-642-12245-0 024 7 $a10.1007/978-3-642-12245-3 035 $a(CKB)2550000000011510 035 $a(SSID)ssj0000399635 035 $a(PQKBManifestationID)11243882 035 $a(PQKBTitleCode)TC0000399635 035 $a(PQKBWorkID)10393512 035 $a(PQKB)11356557 035 $a(DE-He213)978-3-642-12245-3 035 $a(MiAaPQ)EBC3065299 035 $a(PPN)149062982 035 $a(EXLCZ)992550000000011510 100 $a20100528d2010 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aPolyharmonic Boundary Value Problems$b[electronic resource] $ePositivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains /$fby Filippo Gazzola, Hans-Christoph Grunau, Guido Sweers 205 $a1st ed. 2010. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2010. 215 $a1 online resource (XVIII, 423 p. 18 illus.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1991 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-12244-2 320 $aIncludes bibliographical references and indexes. 327 $aModels of Higher Order -- Linear Problems -- Eigenvalue Problems -- Kernel Estimates -- Positivity and Lower Order Perturbations -- Dominance of Positivity in Linear Equations -- Semilinear Problems -- Willmore Surfaces of Revolution. 330 $aThis monograph covers higher order linear and nonlinear elliptic boundary value problems in bounded domains, mainly with the biharmonic or poly-harmonic operator as leading principal part. Underlying models and, in particular, the role of different boundary conditions are explained in detail. As for linear problems, after a brief summary of the existence theory and Lp and Schauder estimates, the focus is on positivity or - since, in contrast to second order equations, a general form of a comparison principle does not exist - on ?near positivity.? The required kernel estimates are also presented in detail. As for nonlinear problems, several techniques well-known from second order equations cannot be utilized and have to be replaced by new and different methods. Subcritical, critical and supercritical nonlinearities are discussed and various existence and nonexistence results are proved. The interplay with the positivity topic from the ?rst part is emphasized and, moreover, a far-reaching Gidas-Ni-Nirenberg-type symmetry result is included. Finally, some recent progress on the Dirichlet problem for Willmore surfaces under symmetry assumptions is discussed. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1991 606 $aMathematics 606 $aFunctional analysis 606 $aDifferential geometry 606 $aMechanics 606 $aMechanics, Applied 606 $aMathematics, general$3https://scigraph.springernature.com/ontologies/product-market-codes/M00009 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 606 $aDifferential Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21022 606 $aSolid Mechanics$3https://scigraph.springernature.com/ontologies/product-market-codes/T15010 615 0$aMathematics. 615 0$aFunctional analysis. 615 0$aDifferential geometry. 615 0$aMechanics. 615 0$aMechanics, Applied. 615 14$aMathematics, general. 615 24$aFunctional Analysis. 615 24$aDifferential Geometry. 615 24$aSolid Mechanics. 676 $a515/.35 700 $aGazzola$b Filippo$4aut$4http://id.loc.gov/vocabulary/relators/aut$0477156 702 $aGrunau$b Hans-Christoph$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aSweers$b Guido$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a996466487403316 996 $aPolyharmonic Boundary Value Problems$92830981 997 $aUNISA