LEADER 01085nam2 2200289 i 450 001 996304750203316 005 20190905103244.0 010 $a2-7283-0347-9 020 $aIT$b96-9385 100 $a19960313d1995----||||0itac50 ba 101 $afre 102 $aIT 200 1 $a<> dévotion au pape et les catholiques français$esous le pontificat de Pie IX (1846-1878)$ed'après les archives de la Bibliothèque apostolique Vaticane$fBruno Horaist 210 $aRoma$cÉcole française de Rome$d1995 215 $a757 p., [4] carte di tav.$d24 cm 225 $aCollection de l'École française de Rome$v212 410 0$1001996303750303316$12001$aCollection de l'École française de Rome$v212 606 0 $aCattolicesimo$xRapporti [con la] Politica$yFrancia$z1850-1870$2BNCF 676 $a261.70944 702 1$aHORAIST,$bBruno 801 0$aIT$bsalbc$gISBD 912 $a996304750203316 951 $aXV.20. Coll. 6/ 26$b270908 L.M.$cXV.20.$d448143 959 $aBK 969 $aFJBER 996 $aDévotion au pape et les catholiques français$91561197 997 $aUNISA LEADER 03924nam 22006375 450 001 996466486503316 005 20200701195716.0 010 $a1-280-39172-3 010 $a9786613569646 010 $a3-642-12248-5 024 7 $a10.1007/978-3-642-12248-4 035 $a(CKB)2550000000011511 035 $a(SSID)ssj0000450229 035 $a(PQKBManifestationID)11298118 035 $a(PQKBTitleCode)TC0000450229 035 $a(PQKBWorkID)10453206 035 $a(PQKB)11195118 035 $a(DE-He213)978-3-642-12248-4 035 $a(MiAaPQ)EBC3065280 035 $a(PPN)149078595 035 $a(EXLCZ)992550000000011511 100 $a20100528d2010 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aRegularity and Approximability of Electronic Wave Functions$b[electronic resource] /$fby Harry Yserentant 205 $a1st ed. 2010. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2010. 215 $a1 online resource (VIII, 188 p. 6 illus.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2000 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-12247-7 320 $aIncludes bibliographical references (177-180) and index. 327 $aand Outline -- Fourier Analysis -- The Basics of Quantum Mechanics -- The Electronic Schrödinger Equation -- Spectrum and Exponential Decay -- Existence and Decay of Mixed Derivatives -- Eigenfunction Expansions -- Convergence Rates and Complexity Bounds -- The Radial-Angular Decomposition. 330 $aThe electronic Schrödinger equation describes the motion of N-electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, with three spatial dimensions for each electron. Approximating these solutions is thus inordinately challenging, and it is generally believed that a reduction to simplified models, such as those of the Hartree-Fock method or density functional theory, is the only tenable approach. This book seeks to show readers that this conventional wisdom need not be ironclad: the regularity of the solutions, which increases with the number of electrons, the decay behavior of their mixed derivatives, and the antisymmetry enforced by the Pauli principle contribute properties that allow these functions to be approximated with an order of complexity which comes arbitrarily close to that for a system of one or two electrons. The text is accessible to a mathematical audience at the beginning graduate level as well as to physicists and theoretical chemists with a comparable mathematical background and requires no deeper knowledge of the theory of partial differential equations, functional analysis, or quantum theory. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2000 606 $aPartial differential equations 606 $aApproximation theory 606 $aNumerical analysis 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aApproximations and Expansions$3https://scigraph.springernature.com/ontologies/product-market-codes/M12023 606 $aNumerical Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M14050 615 0$aPartial differential equations. 615 0$aApproximation theory. 615 0$aNumerical analysis. 615 14$aPartial Differential Equations. 615 24$aApproximations and Expansions. 615 24$aNumerical Analysis. 676 $a515.353 700 $aYserentant$b Harry$4aut$4http://id.loc.gov/vocabulary/relators/aut$0478940 906 $aBOOK 912 $a996466486503316 996 $aRegularity and approximability of electronic wave functions$9261786 997 $aUNISA LEADER 01496nam0 22003613i 450 001 UFI0464412 005 20251003044429.0 010 $a8888131434 100 $a20080919d2004 ||||0itac50 ba 101 | $aita 102 $ait 181 1$6z01$ai $bxxxe 182 1$6z01$an 200 1 $aIngegneria della sicurezza antincendio$fAntonio La Malfa 205 $a2. ed 210 $aRoma$cLegislazione tecnica$d2004 215 $a320 p.$cill.$d24 cm. 606 $aIncendi$xPrevenzione$2FIR$3CFIC014249$9E 606 $aMateriali da costruzione$xResistenza al fuoco$2FIR$3CFIC049385$9I 676 $a628.9$9Altri rami dell'ingegneria sanitaria e dell'urbanistica tecnica$v14 676 $a628.92$9ALTRI RAMI DELL'INGEGNERIA SANITARIA E DELL'URBANISTICA TECNICA. TECNOLOGIA DELLA LOTTA E DELLA PROTEZIONE ANTINCENDIO$v22 696 $aMateriali edilizi$aMateriali strutturali 699 $aMateriali da costruzione$yMateriali edilizi 699 $aMateriali da costruzione$yMateriali strutturali 700 1$aLa Malfa$b, Antonio$f <1958- >$3MILV288311$4070$0804861 801 3$aIT$bIT-000000$c20080919 850 $aIT-BN0095 901 $bNAP 01$cSALA DING $n$ 912 $aUFI0464412 950 0$aBiblioteca Centralizzata di Ateneo$b1 v.$c1 v.$d 01SALA DING 628.9 LAM.in$e 0102 0000057465 VMA A4 1 v.$fY $h20050908$i20050908 977 $a 01 996 $aIngegneria della sicurezza antincendio$91807024 997 $aUNISANNIO